On regularizing the ML-MCTDH equations of motion
In a recent paper [H.-D. Meyer and H. Wang, J. Chem. Phys. 148, 124105 (2018)], we have examined the regularization of the equations of motion (EOMs) of the multiconfiguration time-dependent Hartree (MCTDH) approach. We could show that the standard regularization scheme used by almost all researcher...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2018-07, Vol.149 (4), p.044119-044119 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 044119 |
---|---|
container_issue | 4 |
container_start_page | 044119 |
container_title | The Journal of chemical physics |
container_volume | 149 |
creator | Wang, Haobin Meyer, Hans-Dieter |
description | In a recent paper [H.-D. Meyer and H. Wang, J. Chem. Phys. 148, 124105 (2018)], we have examined the regularization of the equations of motion (EOMs) of the multiconfiguration time-dependent Hartree (MCTDH) approach. We could show that the standard regularization scheme used by almost all researchers in the field is not optimal. The improved regularization allows for larger values of the regularization parameter ϵ, is less sensitive to the actual choice of ϵ, and performs the rotation of initially unoccupied single-particle functions into the “correct” direction in Hilbert space much faster than the old scheme. The latter point increases both the accuracy and efficiency of time propagation for challenging problems. For simple problems, the new scheme requires some additional numerical work as compared with the old scheme, ranging from negligible to almost doubling the total numerical labor. For demanding problems, on the other hand, the additional numerical work of the new scheme is often overcompensated by less steps taken by the integrator. In the present paper, we generalize the new regularization scheme to the multi-layer (ML) extension of MCTDH. Although the principle idea of the new regularization scheme remains unaltered, it was not obvious how the new scheme should be implemented into ML-MCTDH. The ML-MCTDH EOMs are much more complicated than the MCTDH ones, and for optimal numerical performance it was necessary to derive a recursive algorithm for implementing the new regularization scheme. |
doi_str_mv | 10.1063/1.5042776 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_5042776</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2082092709</sourcerecordid><originalsourceid>FETCH-LOGICAL-c444t-6318443a8e917e0c9af27868a93305763e38ec8d0d70bcc6bbfc76144ccd7f6c3</originalsourceid><addsrcrecordid>eNp90U9LwzAYBvAgipvTg19Ail5U6HzTpEl6HPPPhI5d5jmkWbp1dM3WtIJ-els7J3jwlBB-PMmbB6FLDEMMjDzgYQg04JwdoT4GEfmcRXCM-gAB9iMGrIfOnFsDAOYBPUU9AsAE5qKPYFZ4pVnWuSqzz6xYetXKeNPYn47njxPP7GpVZbZwnk29jW235-gkVbkzF_t1gN6en-bjiR_PXl7Ho9jXlNLKZwQLSokSJsLcgI5UGnDBhIoIgZAzYogwWixgwSHRmiVJqjnDlGq94CnTZICuu1zrqkw6nVVGr7QtCqMriUNKRBMyQHcdWqlcbstso8oPaVUmJ6NYtmcQABYhxe-4sbed3ZZ2VxtXyU3mtMlzVRhbOxmACCAKOEQNvflD17Yui2bcVvEwJBzI7-W6tM6VJj28AINse5FY7ntp7NU-sU42ZnGQP0U04L4D7aTff_5P2hfrE4_W</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2087553703</pqid></control><display><type>article</type><title>On regularizing the ML-MCTDH equations of motion</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Wang, Haobin ; Meyer, Hans-Dieter</creator><creatorcontrib>Wang, Haobin ; Meyer, Hans-Dieter ; Univ. of California, Oakland, CA (United States) ; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</creatorcontrib><description>In a recent paper [H.-D. Meyer and H. Wang, J. Chem. Phys. 148, 124105 (2018)], we have examined the regularization of the equations of motion (EOMs) of the multiconfiguration time-dependent Hartree (MCTDH) approach. We could show that the standard regularization scheme used by almost all researchers in the field is not optimal. The improved regularization allows for larger values of the regularization parameter ϵ, is less sensitive to the actual choice of ϵ, and performs the rotation of initially unoccupied single-particle functions into the “correct” direction in Hilbert space much faster than the old scheme. The latter point increases both the accuracy and efficiency of time propagation for challenging problems. For simple problems, the new scheme requires some additional numerical work as compared with the old scheme, ranging from negligible to almost doubling the total numerical labor. For demanding problems, on the other hand, the additional numerical work of the new scheme is often overcompensated by less steps taken by the integrator. In the present paper, we generalize the new regularization scheme to the multi-layer (ML) extension of MCTDH. Although the principle idea of the new regularization scheme remains unaltered, it was not obvious how the new scheme should be implemented into ML-MCTDH. The ML-MCTDH EOMs are much more complicated than the MCTDH ones, and for optimal numerical performance it was necessary to derive a recursive algorithm for implementing the new regularization scheme.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.5042776</identifier><identifier>PMID: 30068178</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Chemical Sciences ; Chemistry ; Equations of motion ; Hilbert space ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Multilayers ; Parameter sensitivity ; Physics ; Regularization ; Time dependence</subject><ispartof>The Journal of chemical physics, 2018-07, Vol.149 (4), p.044119-044119</ispartof><rights>Author(s)</rights><rights>2018 Author(s). Published by AIP Publishing.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c444t-6318443a8e917e0c9af27868a93305763e38ec8d0d70bcc6bbfc76144ccd7f6c3</citedby><cites>FETCH-LOGICAL-c444t-6318443a8e917e0c9af27868a93305763e38ec8d0d70bcc6bbfc76144ccd7f6c3</cites><orcidid>0000-0002-3532-7770 ; 0000-0003-1365-0144 ; 0000000235327770 ; 0000000313650144</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/1.5042776$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,780,784,794,885,4512,27924,27925,76384</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30068178$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02018541$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1543876$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Haobin</creatorcontrib><creatorcontrib>Meyer, Hans-Dieter</creatorcontrib><creatorcontrib>Univ. of California, Oakland, CA (United States)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</creatorcontrib><title>On regularizing the ML-MCTDH equations of motion</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>In a recent paper [H.-D. Meyer and H. Wang, J. Chem. Phys. 148, 124105 (2018)], we have examined the regularization of the equations of motion (EOMs) of the multiconfiguration time-dependent Hartree (MCTDH) approach. We could show that the standard regularization scheme used by almost all researchers in the field is not optimal. The improved regularization allows for larger values of the regularization parameter ϵ, is less sensitive to the actual choice of ϵ, and performs the rotation of initially unoccupied single-particle functions into the “correct” direction in Hilbert space much faster than the old scheme. The latter point increases both the accuracy and efficiency of time propagation for challenging problems. For simple problems, the new scheme requires some additional numerical work as compared with the old scheme, ranging from negligible to almost doubling the total numerical labor. For demanding problems, on the other hand, the additional numerical work of the new scheme is often overcompensated by less steps taken by the integrator. In the present paper, we generalize the new regularization scheme to the multi-layer (ML) extension of MCTDH. Although the principle idea of the new regularization scheme remains unaltered, it was not obvious how the new scheme should be implemented into ML-MCTDH. The ML-MCTDH EOMs are much more complicated than the MCTDH ones, and for optimal numerical performance it was necessary to derive a recursive algorithm for implementing the new regularization scheme.</description><subject>Chemical Sciences</subject><subject>Chemistry</subject><subject>Equations of motion</subject><subject>Hilbert space</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Multilayers</subject><subject>Parameter sensitivity</subject><subject>Physics</subject><subject>Regularization</subject><subject>Time dependence</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp90U9LwzAYBvAgipvTg19Ail5U6HzTpEl6HPPPhI5d5jmkWbp1dM3WtIJ-els7J3jwlBB-PMmbB6FLDEMMjDzgYQg04JwdoT4GEfmcRXCM-gAB9iMGrIfOnFsDAOYBPUU9AsAE5qKPYFZ4pVnWuSqzz6xYetXKeNPYn47njxPP7GpVZbZwnk29jW235-gkVbkzF_t1gN6en-bjiR_PXl7Ho9jXlNLKZwQLSokSJsLcgI5UGnDBhIoIgZAzYogwWixgwSHRmiVJqjnDlGq94CnTZICuu1zrqkw6nVVGr7QtCqMriUNKRBMyQHcdWqlcbstso8oPaVUmJ6NYtmcQABYhxe-4sbed3ZZ2VxtXyU3mtMlzVRhbOxmACCAKOEQNvflD17Yui2bcVvEwJBzI7-W6tM6VJj28AINse5FY7ntp7NU-sU42ZnGQP0U04L4D7aTff_5P2hfrE4_W</recordid><startdate>20180728</startdate><enddate>20180728</enddate><creator>Wang, Haobin</creator><creator>Meyer, Hans-Dieter</creator><general>American Institute of Physics</general><general>American Institute of Physics (AIP)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>1XC</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-3532-7770</orcidid><orcidid>https://orcid.org/0000-0003-1365-0144</orcidid><orcidid>https://orcid.org/0000000235327770</orcidid><orcidid>https://orcid.org/0000000313650144</orcidid></search><sort><creationdate>20180728</creationdate><title>On regularizing the ML-MCTDH equations of motion</title><author>Wang, Haobin ; Meyer, Hans-Dieter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c444t-6318443a8e917e0c9af27868a93305763e38ec8d0d70bcc6bbfc76144ccd7f6c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Chemical Sciences</topic><topic>Chemistry</topic><topic>Equations of motion</topic><topic>Hilbert space</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Multilayers</topic><topic>Parameter sensitivity</topic><topic>Physics</topic><topic>Regularization</topic><topic>Time dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Haobin</creatorcontrib><creatorcontrib>Meyer, Hans-Dieter</creatorcontrib><creatorcontrib>Univ. of California, Oakland, CA (United States)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Haobin</au><au>Meyer, Hans-Dieter</au><aucorp>Univ. of California, Oakland, CA (United States)</aucorp><aucorp>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On regularizing the ML-MCTDH equations of motion</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2018-07-28</date><risdate>2018</risdate><volume>149</volume><issue>4</issue><spage>044119</spage><epage>044119</epage><pages>044119-044119</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>In a recent paper [H.-D. Meyer and H. Wang, J. Chem. Phys. 148, 124105 (2018)], we have examined the regularization of the equations of motion (EOMs) of the multiconfiguration time-dependent Hartree (MCTDH) approach. We could show that the standard regularization scheme used by almost all researchers in the field is not optimal. The improved regularization allows for larger values of the regularization parameter ϵ, is less sensitive to the actual choice of ϵ, and performs the rotation of initially unoccupied single-particle functions into the “correct” direction in Hilbert space much faster than the old scheme. The latter point increases both the accuracy and efficiency of time propagation for challenging problems. For simple problems, the new scheme requires some additional numerical work as compared with the old scheme, ranging from negligible to almost doubling the total numerical labor. For demanding problems, on the other hand, the additional numerical work of the new scheme is often overcompensated by less steps taken by the integrator. In the present paper, we generalize the new regularization scheme to the multi-layer (ML) extension of MCTDH. Although the principle idea of the new regularization scheme remains unaltered, it was not obvious how the new scheme should be implemented into ML-MCTDH. The ML-MCTDH EOMs are much more complicated than the MCTDH ones, and for optimal numerical performance it was necessary to derive a recursive algorithm for implementing the new regularization scheme.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>30068178</pmid><doi>10.1063/1.5042776</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3532-7770</orcidid><orcidid>https://orcid.org/0000-0003-1365-0144</orcidid><orcidid>https://orcid.org/0000000235327770</orcidid><orcidid>https://orcid.org/0000000313650144</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2018-07, Vol.149 (4), p.044119-044119 |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_scitation_primary_10_1063_1_5042776 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Chemical Sciences Chemistry Equations of motion Hilbert space INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY Multilayers Parameter sensitivity Physics Regularization Time dependence |
title | On regularizing the ML-MCTDH equations of motion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T11%3A29%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20regularizing%20the%20ML-MCTDH%20equations%20of%20motion&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Wang,%20Haobin&rft.aucorp=Univ.%20of%20California,%20Oakland,%20CA%20(United%20States)&rft.date=2018-07-28&rft.volume=149&rft.issue=4&rft.spage=044119&rft.epage=044119&rft.pages=044119-044119&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/1.5042776&rft_dat=%3Cproquest_scita%3E2082092709%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2087553703&rft_id=info:pmid/30068178&rfr_iscdi=true |