On regularizing the ML-MCTDH equations of motion

In a recent paper [H.-D. Meyer and H. Wang, J. Chem. Phys. 148, 124105 (2018)], we have examined the regularization of the equations of motion (EOMs) of the multiconfiguration time-dependent Hartree (MCTDH) approach. We could show that the standard regularization scheme used by almost all researcher...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2018-07, Vol.149 (4), p.044119-044119
Hauptverfasser: Wang, Haobin, Meyer, Hans-Dieter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 044119
container_issue 4
container_start_page 044119
container_title The Journal of chemical physics
container_volume 149
creator Wang, Haobin
Meyer, Hans-Dieter
description In a recent paper [H.-D. Meyer and H. Wang, J. Chem. Phys. 148, 124105 (2018)], we have examined the regularization of the equations of motion (EOMs) of the multiconfiguration time-dependent Hartree (MCTDH) approach. We could show that the standard regularization scheme used by almost all researchers in the field is not optimal. The improved regularization allows for larger values of the regularization parameter ϵ, is less sensitive to the actual choice of ϵ, and performs the rotation of initially unoccupied single-particle functions into the “correct” direction in Hilbert space much faster than the old scheme. The latter point increases both the accuracy and efficiency of time propagation for challenging problems. For simple problems, the new scheme requires some additional numerical work as compared with the old scheme, ranging from negligible to almost doubling the total numerical labor. For demanding problems, on the other hand, the additional numerical work of the new scheme is often overcompensated by less steps taken by the integrator. In the present paper, we generalize the new regularization scheme to the multi-layer (ML) extension of MCTDH. Although the principle idea of the new regularization scheme remains unaltered, it was not obvious how the new scheme should be implemented into ML-MCTDH. The ML-MCTDH EOMs are much more complicated than the MCTDH ones, and for optimal numerical performance it was necessary to derive a recursive algorithm for implementing the new regularization scheme.
doi_str_mv 10.1063/1.5042776
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_5042776</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2082092709</sourcerecordid><originalsourceid>FETCH-LOGICAL-c444t-6318443a8e917e0c9af27868a93305763e38ec8d0d70bcc6bbfc76144ccd7f6c3</originalsourceid><addsrcrecordid>eNp90U9LwzAYBvAgipvTg19Ail5U6HzTpEl6HPPPhI5d5jmkWbp1dM3WtIJ-els7J3jwlBB-PMmbB6FLDEMMjDzgYQg04JwdoT4GEfmcRXCM-gAB9iMGrIfOnFsDAOYBPUU9AsAE5qKPYFZ4pVnWuSqzz6xYetXKeNPYn47njxPP7GpVZbZwnk29jW235-gkVbkzF_t1gN6en-bjiR_PXl7Ho9jXlNLKZwQLSokSJsLcgI5UGnDBhIoIgZAzYogwWixgwSHRmiVJqjnDlGq94CnTZICuu1zrqkw6nVVGr7QtCqMriUNKRBMyQHcdWqlcbstso8oPaVUmJ6NYtmcQABYhxe-4sbed3ZZ2VxtXyU3mtMlzVRhbOxmACCAKOEQNvflD17Yui2bcVvEwJBzI7-W6tM6VJj28AINse5FY7ntp7NU-sU42ZnGQP0U04L4D7aTff_5P2hfrE4_W</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2087553703</pqid></control><display><type>article</type><title>On regularizing the ML-MCTDH equations of motion</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Wang, Haobin ; Meyer, Hans-Dieter</creator><creatorcontrib>Wang, Haobin ; Meyer, Hans-Dieter ; Univ. of California, Oakland, CA (United States) ; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</creatorcontrib><description>In a recent paper [H.-D. Meyer and H. Wang, J. Chem. Phys. 148, 124105 (2018)], we have examined the regularization of the equations of motion (EOMs) of the multiconfiguration time-dependent Hartree (MCTDH) approach. We could show that the standard regularization scheme used by almost all researchers in the field is not optimal. The improved regularization allows for larger values of the regularization parameter ϵ, is less sensitive to the actual choice of ϵ, and performs the rotation of initially unoccupied single-particle functions into the “correct” direction in Hilbert space much faster than the old scheme. The latter point increases both the accuracy and efficiency of time propagation for challenging problems. For simple problems, the new scheme requires some additional numerical work as compared with the old scheme, ranging from negligible to almost doubling the total numerical labor. For demanding problems, on the other hand, the additional numerical work of the new scheme is often overcompensated by less steps taken by the integrator. In the present paper, we generalize the new regularization scheme to the multi-layer (ML) extension of MCTDH. Although the principle idea of the new regularization scheme remains unaltered, it was not obvious how the new scheme should be implemented into ML-MCTDH. The ML-MCTDH EOMs are much more complicated than the MCTDH ones, and for optimal numerical performance it was necessary to derive a recursive algorithm for implementing the new regularization scheme.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.5042776</identifier><identifier>PMID: 30068178</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Chemical Sciences ; Chemistry ; Equations of motion ; Hilbert space ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Multilayers ; Parameter sensitivity ; Physics ; Regularization ; Time dependence</subject><ispartof>The Journal of chemical physics, 2018-07, Vol.149 (4), p.044119-044119</ispartof><rights>Author(s)</rights><rights>2018 Author(s). Published by AIP Publishing.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c444t-6318443a8e917e0c9af27868a93305763e38ec8d0d70bcc6bbfc76144ccd7f6c3</citedby><cites>FETCH-LOGICAL-c444t-6318443a8e917e0c9af27868a93305763e38ec8d0d70bcc6bbfc76144ccd7f6c3</cites><orcidid>0000-0002-3532-7770 ; 0000-0003-1365-0144 ; 0000000235327770 ; 0000000313650144</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/1.5042776$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,780,784,794,885,4512,27924,27925,76384</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30068178$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02018541$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1543876$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Haobin</creatorcontrib><creatorcontrib>Meyer, Hans-Dieter</creatorcontrib><creatorcontrib>Univ. of California, Oakland, CA (United States)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</creatorcontrib><title>On regularizing the ML-MCTDH equations of motion</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>In a recent paper [H.-D. Meyer and H. Wang, J. Chem. Phys. 148, 124105 (2018)], we have examined the regularization of the equations of motion (EOMs) of the multiconfiguration time-dependent Hartree (MCTDH) approach. We could show that the standard regularization scheme used by almost all researchers in the field is not optimal. The improved regularization allows for larger values of the regularization parameter ϵ, is less sensitive to the actual choice of ϵ, and performs the rotation of initially unoccupied single-particle functions into the “correct” direction in Hilbert space much faster than the old scheme. The latter point increases both the accuracy and efficiency of time propagation for challenging problems. For simple problems, the new scheme requires some additional numerical work as compared with the old scheme, ranging from negligible to almost doubling the total numerical labor. For demanding problems, on the other hand, the additional numerical work of the new scheme is often overcompensated by less steps taken by the integrator. In the present paper, we generalize the new regularization scheme to the multi-layer (ML) extension of MCTDH. Although the principle idea of the new regularization scheme remains unaltered, it was not obvious how the new scheme should be implemented into ML-MCTDH. The ML-MCTDH EOMs are much more complicated than the MCTDH ones, and for optimal numerical performance it was necessary to derive a recursive algorithm for implementing the new regularization scheme.</description><subject>Chemical Sciences</subject><subject>Chemistry</subject><subject>Equations of motion</subject><subject>Hilbert space</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Multilayers</subject><subject>Parameter sensitivity</subject><subject>Physics</subject><subject>Regularization</subject><subject>Time dependence</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp90U9LwzAYBvAgipvTg19Ail5U6HzTpEl6HPPPhI5d5jmkWbp1dM3WtIJ-els7J3jwlBB-PMmbB6FLDEMMjDzgYQg04JwdoT4GEfmcRXCM-gAB9iMGrIfOnFsDAOYBPUU9AsAE5qKPYFZ4pVnWuSqzz6xYetXKeNPYn47njxPP7GpVZbZwnk29jW235-gkVbkzF_t1gN6en-bjiR_PXl7Ho9jXlNLKZwQLSokSJsLcgI5UGnDBhIoIgZAzYogwWixgwSHRmiVJqjnDlGq94CnTZICuu1zrqkw6nVVGr7QtCqMriUNKRBMyQHcdWqlcbstso8oPaVUmJ6NYtmcQABYhxe-4sbed3ZZ2VxtXyU3mtMlzVRhbOxmACCAKOEQNvflD17Yui2bcVvEwJBzI7-W6tM6VJj28AINse5FY7ntp7NU-sU42ZnGQP0U04L4D7aTff_5P2hfrE4_W</recordid><startdate>20180728</startdate><enddate>20180728</enddate><creator>Wang, Haobin</creator><creator>Meyer, Hans-Dieter</creator><general>American Institute of Physics</general><general>American Institute of Physics (AIP)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>1XC</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-3532-7770</orcidid><orcidid>https://orcid.org/0000-0003-1365-0144</orcidid><orcidid>https://orcid.org/0000000235327770</orcidid><orcidid>https://orcid.org/0000000313650144</orcidid></search><sort><creationdate>20180728</creationdate><title>On regularizing the ML-MCTDH equations of motion</title><author>Wang, Haobin ; Meyer, Hans-Dieter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c444t-6318443a8e917e0c9af27868a93305763e38ec8d0d70bcc6bbfc76144ccd7f6c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Chemical Sciences</topic><topic>Chemistry</topic><topic>Equations of motion</topic><topic>Hilbert space</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Multilayers</topic><topic>Parameter sensitivity</topic><topic>Physics</topic><topic>Regularization</topic><topic>Time dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Haobin</creatorcontrib><creatorcontrib>Meyer, Hans-Dieter</creatorcontrib><creatorcontrib>Univ. of California, Oakland, CA (United States)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Haobin</au><au>Meyer, Hans-Dieter</au><aucorp>Univ. of California, Oakland, CA (United States)</aucorp><aucorp>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On regularizing the ML-MCTDH equations of motion</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2018-07-28</date><risdate>2018</risdate><volume>149</volume><issue>4</issue><spage>044119</spage><epage>044119</epage><pages>044119-044119</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>In a recent paper [H.-D. Meyer and H. Wang, J. Chem. Phys. 148, 124105 (2018)], we have examined the regularization of the equations of motion (EOMs) of the multiconfiguration time-dependent Hartree (MCTDH) approach. We could show that the standard regularization scheme used by almost all researchers in the field is not optimal. The improved regularization allows for larger values of the regularization parameter ϵ, is less sensitive to the actual choice of ϵ, and performs the rotation of initially unoccupied single-particle functions into the “correct” direction in Hilbert space much faster than the old scheme. The latter point increases both the accuracy and efficiency of time propagation for challenging problems. For simple problems, the new scheme requires some additional numerical work as compared with the old scheme, ranging from negligible to almost doubling the total numerical labor. For demanding problems, on the other hand, the additional numerical work of the new scheme is often overcompensated by less steps taken by the integrator. In the present paper, we generalize the new regularization scheme to the multi-layer (ML) extension of MCTDH. Although the principle idea of the new regularization scheme remains unaltered, it was not obvious how the new scheme should be implemented into ML-MCTDH. The ML-MCTDH EOMs are much more complicated than the MCTDH ones, and for optimal numerical performance it was necessary to derive a recursive algorithm for implementing the new regularization scheme.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>30068178</pmid><doi>10.1063/1.5042776</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3532-7770</orcidid><orcidid>https://orcid.org/0000-0003-1365-0144</orcidid><orcidid>https://orcid.org/0000000235327770</orcidid><orcidid>https://orcid.org/0000000313650144</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2018-07, Vol.149 (4), p.044119-044119
issn 0021-9606
1089-7690
language eng
recordid cdi_scitation_primary_10_1063_1_5042776
source AIP Journals Complete; Alma/SFX Local Collection
subjects Chemical Sciences
Chemistry
Equations of motion
Hilbert space
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Multilayers
Parameter sensitivity
Physics
Regularization
Time dependence
title On regularizing the ML-MCTDH equations of motion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T11%3A29%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20regularizing%20the%20ML-MCTDH%20equations%20of%20motion&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Wang,%20Haobin&rft.aucorp=Univ.%20of%20California,%20Oakland,%20CA%20(United%20States)&rft.date=2018-07-28&rft.volume=149&rft.issue=4&rft.spage=044119&rft.epage=044119&rft.pages=044119-044119&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/1.5042776&rft_dat=%3Cproquest_scita%3E2082092709%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2087553703&rft_id=info:pmid/30068178&rfr_iscdi=true