Tutorial: Brain-inspired computing using phase-change memory devices
There is a significant need to build efficient non-von Neumann computing systems for highly data-centric artificial intelligence related applications. Brain-inspired computing is one such approach that shows significant promise. Memory is expected to play a key role in this form of computing and, in...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2018-09, Vol.124 (11) |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 11 |
container_start_page | |
container_title | Journal of applied physics |
container_volume | 124 |
creator | Sebastian, Abu Le Gallo, Manuel Burr, Geoffrey W. Kim, Sangbum BrightSky, Matthew Eleftheriou, Evangelos |
description | There is a significant need to build efficient non-von Neumann computing systems for highly data-centric artificial intelligence related applications. Brain-inspired computing is one such approach that shows significant promise. Memory is expected to play a key role in this form of computing and, in particular, phase-change memory (PCM), arguably the most advanced emerging non-volatile memory technology. Given a lack of comprehensive understanding of the working principles of the brain, brain-inspired computing is likely to be realized in multiple levels of inspiration. In the first level of inspiration, the idea would be to build computing units where memory and processing co-exist in some form. Computational memory is an example where the physical attributes and the state dynamics of memory devices are exploited to perform certain computational tasks in the memory itself with very high areal and energy efficiency. In a second level of brain-inspired computing using PCM devices, one could design a co-processor comprising multiple cross-bar arrays of PCM devices to accelerate the training of deep neural networks. PCM technology could also play a key role in the space of specialized computing substrates for spiking neural networks, and this can be viewed as the third level of brain-inspired computing using these devices. |
doi_str_mv | 10.1063/1.5042413 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_5042413</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2108595707</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-ecb633ef3a48f274cf9f838929c01b98d518ab6f1292f287b36706351ffe763a3</originalsourceid><addsrcrecordid>eNqd0M9LwzAUB_AgCs7pwf-g4EkhMy9pm8Sbzp8w8DLPIU2TLWNtatIO9t9b2cC7l_cuH97j-0XoGsgMSMnuYVaQnObATtAEiJCYFwU5RRNCKGAhuTxHFyltCAEQTE7Q83LoQ_R6-5A9Re1b7NvU-WjrzISmG3rfrrIh_c5urZPFZq3blc0a24S4z2q788amS3Tm9DbZq-Oeoq_Xl-X8HS8-3z7mjwtsWEl7bE1VMmYd07lwlOfGSSeYkFQaApUUdQFCV6UDKqmjgles5GOmApyzvGSaTdHN4W4Xw_dgU682YYjt-FLRMWwhC074qG4PysSQUrROddE3Ou4VEPVbkgJ1LGm0dwebjO9170P7P7wL8Q-qrnbsB-oRdGo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2108595707</pqid></control><display><type>article</type><title>Tutorial: Brain-inspired computing using phase-change memory devices</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Sebastian, Abu ; Le Gallo, Manuel ; Burr, Geoffrey W. ; Kim, Sangbum ; BrightSky, Matthew ; Eleftheriou, Evangelos</creator><creatorcontrib>Sebastian, Abu ; Le Gallo, Manuel ; Burr, Geoffrey W. ; Kim, Sangbum ; BrightSky, Matthew ; Eleftheriou, Evangelos</creatorcontrib><description>There is a significant need to build efficient non-von Neumann computing systems for highly data-centric artificial intelligence related applications. Brain-inspired computing is one such approach that shows significant promise. Memory is expected to play a key role in this form of computing and, in particular, phase-change memory (PCM), arguably the most advanced emerging non-volatile memory technology. Given a lack of comprehensive understanding of the working principles of the brain, brain-inspired computing is likely to be realized in multiple levels of inspiration. In the first level of inspiration, the idea would be to build computing units where memory and processing co-exist in some form. Computational memory is an example where the physical attributes and the state dynamics of memory devices are exploited to perform certain computational tasks in the memory itself with very high areal and energy efficiency. In a second level of brain-inspired computing using PCM devices, one could design a co-processor comprising multiple cross-bar arrays of PCM devices to accelerate the training of deep neural networks. PCM technology could also play a key role in the space of specialized computing substrates for spiking neural networks, and this can be viewed as the third level of brain-inspired computing using these devices.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.5042413</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Artificial neural networks ; Brain ; Computation ; Computer memory ; Inspiration ; Memory devices ; Memory tasks ; Microprocessors ; Neural networks ; Phase change ; Phase transitions ; Substrates</subject><ispartof>Journal of applied physics, 2018-09, Vol.124 (11)</ispartof><rights>Author(s)</rights><rights>2018 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-ecb633ef3a48f274cf9f838929c01b98d518ab6f1292f287b36706351ffe763a3</citedby><cites>FETCH-LOGICAL-c362t-ecb633ef3a48f274cf9f838929c01b98d518ab6f1292f287b36706351ffe763a3</cites><orcidid>0000-0001-5717-2549 ; 0000-0003-1600-6151</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/1.5042413$$EHTML$$P50$$Gscitation$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids></links><search><creatorcontrib>Sebastian, Abu</creatorcontrib><creatorcontrib>Le Gallo, Manuel</creatorcontrib><creatorcontrib>Burr, Geoffrey W.</creatorcontrib><creatorcontrib>Kim, Sangbum</creatorcontrib><creatorcontrib>BrightSky, Matthew</creatorcontrib><creatorcontrib>Eleftheriou, Evangelos</creatorcontrib><title>Tutorial: Brain-inspired computing using phase-change memory devices</title><title>Journal of applied physics</title><description>There is a significant need to build efficient non-von Neumann computing systems for highly data-centric artificial intelligence related applications. Brain-inspired computing is one such approach that shows significant promise. Memory is expected to play a key role in this form of computing and, in particular, phase-change memory (PCM), arguably the most advanced emerging non-volatile memory technology. Given a lack of comprehensive understanding of the working principles of the brain, brain-inspired computing is likely to be realized in multiple levels of inspiration. In the first level of inspiration, the idea would be to build computing units where memory and processing co-exist in some form. Computational memory is an example where the physical attributes and the state dynamics of memory devices are exploited to perform certain computational tasks in the memory itself with very high areal and energy efficiency. In a second level of brain-inspired computing using PCM devices, one could design a co-processor comprising multiple cross-bar arrays of PCM devices to accelerate the training of deep neural networks. PCM technology could also play a key role in the space of specialized computing substrates for spiking neural networks, and this can be viewed as the third level of brain-inspired computing using these devices.</description><subject>Applied physics</subject><subject>Artificial neural networks</subject><subject>Brain</subject><subject>Computation</subject><subject>Computer memory</subject><subject>Inspiration</subject><subject>Memory devices</subject><subject>Memory tasks</subject><subject>Microprocessors</subject><subject>Neural networks</subject><subject>Phase change</subject><subject>Phase transitions</subject><subject>Substrates</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqd0M9LwzAUB_AgCs7pwf-g4EkhMy9pm8Sbzp8w8DLPIU2TLWNtatIO9t9b2cC7l_cuH97j-0XoGsgMSMnuYVaQnObATtAEiJCYFwU5RRNCKGAhuTxHFyltCAEQTE7Q83LoQ_R6-5A9Re1b7NvU-WjrzISmG3rfrrIh_c5urZPFZq3blc0a24S4z2q788amS3Tm9DbZq-Oeoq_Xl-X8HS8-3z7mjwtsWEl7bE1VMmYd07lwlOfGSSeYkFQaApUUdQFCV6UDKqmjgles5GOmApyzvGSaTdHN4W4Xw_dgU682YYjt-FLRMWwhC074qG4PysSQUrROddE3Ou4VEPVbkgJ1LGm0dwebjO9170P7P7wL8Q-qrnbsB-oRdGo</recordid><startdate>20180921</startdate><enddate>20180921</enddate><creator>Sebastian, Abu</creator><creator>Le Gallo, Manuel</creator><creator>Burr, Geoffrey W.</creator><creator>Kim, Sangbum</creator><creator>BrightSky, Matthew</creator><creator>Eleftheriou, Evangelos</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5717-2549</orcidid><orcidid>https://orcid.org/0000-0003-1600-6151</orcidid></search><sort><creationdate>20180921</creationdate><title>Tutorial: Brain-inspired computing using phase-change memory devices</title><author>Sebastian, Abu ; Le Gallo, Manuel ; Burr, Geoffrey W. ; Kim, Sangbum ; BrightSky, Matthew ; Eleftheriou, Evangelos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-ecb633ef3a48f274cf9f838929c01b98d518ab6f1292f287b36706351ffe763a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Applied physics</topic><topic>Artificial neural networks</topic><topic>Brain</topic><topic>Computation</topic><topic>Computer memory</topic><topic>Inspiration</topic><topic>Memory devices</topic><topic>Memory tasks</topic><topic>Microprocessors</topic><topic>Neural networks</topic><topic>Phase change</topic><topic>Phase transitions</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sebastian, Abu</creatorcontrib><creatorcontrib>Le Gallo, Manuel</creatorcontrib><creatorcontrib>Burr, Geoffrey W.</creatorcontrib><creatorcontrib>Kim, Sangbum</creatorcontrib><creatorcontrib>BrightSky, Matthew</creatorcontrib><creatorcontrib>Eleftheriou, Evangelos</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sebastian, Abu</au><au>Le Gallo, Manuel</au><au>Burr, Geoffrey W.</au><au>Kim, Sangbum</au><au>BrightSky, Matthew</au><au>Eleftheriou, Evangelos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tutorial: Brain-inspired computing using phase-change memory devices</atitle><jtitle>Journal of applied physics</jtitle><date>2018-09-21</date><risdate>2018</risdate><volume>124</volume><issue>11</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>There is a significant need to build efficient non-von Neumann computing systems for highly data-centric artificial intelligence related applications. Brain-inspired computing is one such approach that shows significant promise. Memory is expected to play a key role in this form of computing and, in particular, phase-change memory (PCM), arguably the most advanced emerging non-volatile memory technology. Given a lack of comprehensive understanding of the working principles of the brain, brain-inspired computing is likely to be realized in multiple levels of inspiration. In the first level of inspiration, the idea would be to build computing units where memory and processing co-exist in some form. Computational memory is an example where the physical attributes and the state dynamics of memory devices are exploited to perform certain computational tasks in the memory itself with very high areal and energy efficiency. In a second level of brain-inspired computing using PCM devices, one could design a co-processor comprising multiple cross-bar arrays of PCM devices to accelerate the training of deep neural networks. PCM technology could also play a key role in the space of specialized computing substrates for spiking neural networks, and this can be viewed as the third level of brain-inspired computing using these devices.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5042413</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-5717-2549</orcidid><orcidid>https://orcid.org/0000-0003-1600-6151</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 2018-09, Vol.124 (11) |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_scitation_primary_10_1063_1_5042413 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Applied physics Artificial neural networks Brain Computation Computer memory Inspiration Memory devices Memory tasks Microprocessors Neural networks Phase change Phase transitions Substrates |
title | Tutorial: Brain-inspired computing using phase-change memory devices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T15%3A45%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tutorial:%20Brain-inspired%20computing%20using%20phase-change%20memory%20devices&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Sebastian,%20Abu&rft.date=2018-09-21&rft.volume=124&rft.issue=11&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/1.5042413&rft_dat=%3Cproquest_scita%3E2108595707%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2108595707&rft_id=info:pmid/&rfr_iscdi=true |