Tutorial: Brain-inspired computing using phase-change memory devices

There is a significant need to build efficient non-von Neumann computing systems for highly data-centric artificial intelligence related applications. Brain-inspired computing is one such approach that shows significant promise. Memory is expected to play a key role in this form of computing and, in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2018-09, Vol.124 (11)
Hauptverfasser: Sebastian, Abu, Le Gallo, Manuel, Burr, Geoffrey W., Kim, Sangbum, BrightSky, Matthew, Eleftheriou, Evangelos
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page
container_title Journal of applied physics
container_volume 124
creator Sebastian, Abu
Le Gallo, Manuel
Burr, Geoffrey W.
Kim, Sangbum
BrightSky, Matthew
Eleftheriou, Evangelos
description There is a significant need to build efficient non-von Neumann computing systems for highly data-centric artificial intelligence related applications. Brain-inspired computing is one such approach that shows significant promise. Memory is expected to play a key role in this form of computing and, in particular, phase-change memory (PCM), arguably the most advanced emerging non-volatile memory technology. Given a lack of comprehensive understanding of the working principles of the brain, brain-inspired computing is likely to be realized in multiple levels of inspiration. In the first level of inspiration, the idea would be to build computing units where memory and processing co-exist in some form. Computational memory is an example where the physical attributes and the state dynamics of memory devices are exploited to perform certain computational tasks in the memory itself with very high areal and energy efficiency. In a second level of brain-inspired computing using PCM devices, one could design a co-processor comprising multiple cross-bar arrays of PCM devices to accelerate the training of deep neural networks. PCM technology could also play a key role in the space of specialized computing substrates for spiking neural networks, and this can be viewed as the third level of brain-inspired computing using these devices.
doi_str_mv 10.1063/1.5042413
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_5042413</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2108595707</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-ecb633ef3a48f274cf9f838929c01b98d518ab6f1292f287b36706351ffe763a3</originalsourceid><addsrcrecordid>eNqd0M9LwzAUB_AgCs7pwf-g4EkhMy9pm8Sbzp8w8DLPIU2TLWNtatIO9t9b2cC7l_cuH97j-0XoGsgMSMnuYVaQnObATtAEiJCYFwU5RRNCKGAhuTxHFyltCAEQTE7Q83LoQ_R6-5A9Re1b7NvU-WjrzISmG3rfrrIh_c5urZPFZq3blc0a24S4z2q788amS3Tm9DbZq-Oeoq_Xl-X8HS8-3z7mjwtsWEl7bE1VMmYd07lwlOfGSSeYkFQaApUUdQFCV6UDKqmjgles5GOmApyzvGSaTdHN4W4Xw_dgU682YYjt-FLRMWwhC074qG4PysSQUrROddE3Ou4VEPVbkgJ1LGm0dwebjO9170P7P7wL8Q-qrnbsB-oRdGo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2108595707</pqid></control><display><type>article</type><title>Tutorial: Brain-inspired computing using phase-change memory devices</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Sebastian, Abu ; Le Gallo, Manuel ; Burr, Geoffrey W. ; Kim, Sangbum ; BrightSky, Matthew ; Eleftheriou, Evangelos</creator><creatorcontrib>Sebastian, Abu ; Le Gallo, Manuel ; Burr, Geoffrey W. ; Kim, Sangbum ; BrightSky, Matthew ; Eleftheriou, Evangelos</creatorcontrib><description>There is a significant need to build efficient non-von Neumann computing systems for highly data-centric artificial intelligence related applications. Brain-inspired computing is one such approach that shows significant promise. Memory is expected to play a key role in this form of computing and, in particular, phase-change memory (PCM), arguably the most advanced emerging non-volatile memory technology. Given a lack of comprehensive understanding of the working principles of the brain, brain-inspired computing is likely to be realized in multiple levels of inspiration. In the first level of inspiration, the idea would be to build computing units where memory and processing co-exist in some form. Computational memory is an example where the physical attributes and the state dynamics of memory devices are exploited to perform certain computational tasks in the memory itself with very high areal and energy efficiency. In a second level of brain-inspired computing using PCM devices, one could design a co-processor comprising multiple cross-bar arrays of PCM devices to accelerate the training of deep neural networks. PCM technology could also play a key role in the space of specialized computing substrates for spiking neural networks, and this can be viewed as the third level of brain-inspired computing using these devices.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.5042413</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Artificial neural networks ; Brain ; Computation ; Computer memory ; Inspiration ; Memory devices ; Memory tasks ; Microprocessors ; Neural networks ; Phase change ; Phase transitions ; Substrates</subject><ispartof>Journal of applied physics, 2018-09, Vol.124 (11)</ispartof><rights>Author(s)</rights><rights>2018 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-ecb633ef3a48f274cf9f838929c01b98d518ab6f1292f287b36706351ffe763a3</citedby><cites>FETCH-LOGICAL-c362t-ecb633ef3a48f274cf9f838929c01b98d518ab6f1292f287b36706351ffe763a3</cites><orcidid>0000-0001-5717-2549 ; 0000-0003-1600-6151</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/1.5042413$$EHTML$$P50$$Gscitation$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids></links><search><creatorcontrib>Sebastian, Abu</creatorcontrib><creatorcontrib>Le Gallo, Manuel</creatorcontrib><creatorcontrib>Burr, Geoffrey W.</creatorcontrib><creatorcontrib>Kim, Sangbum</creatorcontrib><creatorcontrib>BrightSky, Matthew</creatorcontrib><creatorcontrib>Eleftheriou, Evangelos</creatorcontrib><title>Tutorial: Brain-inspired computing using phase-change memory devices</title><title>Journal of applied physics</title><description>There is a significant need to build efficient non-von Neumann computing systems for highly data-centric artificial intelligence related applications. Brain-inspired computing is one such approach that shows significant promise. Memory is expected to play a key role in this form of computing and, in particular, phase-change memory (PCM), arguably the most advanced emerging non-volatile memory technology. Given a lack of comprehensive understanding of the working principles of the brain, brain-inspired computing is likely to be realized in multiple levels of inspiration. In the first level of inspiration, the idea would be to build computing units where memory and processing co-exist in some form. Computational memory is an example where the physical attributes and the state dynamics of memory devices are exploited to perform certain computational tasks in the memory itself with very high areal and energy efficiency. In a second level of brain-inspired computing using PCM devices, one could design a co-processor comprising multiple cross-bar arrays of PCM devices to accelerate the training of deep neural networks. PCM technology could also play a key role in the space of specialized computing substrates for spiking neural networks, and this can be viewed as the third level of brain-inspired computing using these devices.</description><subject>Applied physics</subject><subject>Artificial neural networks</subject><subject>Brain</subject><subject>Computation</subject><subject>Computer memory</subject><subject>Inspiration</subject><subject>Memory devices</subject><subject>Memory tasks</subject><subject>Microprocessors</subject><subject>Neural networks</subject><subject>Phase change</subject><subject>Phase transitions</subject><subject>Substrates</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqd0M9LwzAUB_AgCs7pwf-g4EkhMy9pm8Sbzp8w8DLPIU2TLWNtatIO9t9b2cC7l_cuH97j-0XoGsgMSMnuYVaQnObATtAEiJCYFwU5RRNCKGAhuTxHFyltCAEQTE7Q83LoQ_R6-5A9Re1b7NvU-WjrzISmG3rfrrIh_c5urZPFZq3blc0a24S4z2q788amS3Tm9DbZq-Oeoq_Xl-X8HS8-3z7mjwtsWEl7bE1VMmYd07lwlOfGSSeYkFQaApUUdQFCV6UDKqmjgles5GOmApyzvGSaTdHN4W4Xw_dgU682YYjt-FLRMWwhC074qG4PysSQUrROddE3Ou4VEPVbkgJ1LGm0dwebjO9170P7P7wL8Q-qrnbsB-oRdGo</recordid><startdate>20180921</startdate><enddate>20180921</enddate><creator>Sebastian, Abu</creator><creator>Le Gallo, Manuel</creator><creator>Burr, Geoffrey W.</creator><creator>Kim, Sangbum</creator><creator>BrightSky, Matthew</creator><creator>Eleftheriou, Evangelos</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5717-2549</orcidid><orcidid>https://orcid.org/0000-0003-1600-6151</orcidid></search><sort><creationdate>20180921</creationdate><title>Tutorial: Brain-inspired computing using phase-change memory devices</title><author>Sebastian, Abu ; Le Gallo, Manuel ; Burr, Geoffrey W. ; Kim, Sangbum ; BrightSky, Matthew ; Eleftheriou, Evangelos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-ecb633ef3a48f274cf9f838929c01b98d518ab6f1292f287b36706351ffe763a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Applied physics</topic><topic>Artificial neural networks</topic><topic>Brain</topic><topic>Computation</topic><topic>Computer memory</topic><topic>Inspiration</topic><topic>Memory devices</topic><topic>Memory tasks</topic><topic>Microprocessors</topic><topic>Neural networks</topic><topic>Phase change</topic><topic>Phase transitions</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sebastian, Abu</creatorcontrib><creatorcontrib>Le Gallo, Manuel</creatorcontrib><creatorcontrib>Burr, Geoffrey W.</creatorcontrib><creatorcontrib>Kim, Sangbum</creatorcontrib><creatorcontrib>BrightSky, Matthew</creatorcontrib><creatorcontrib>Eleftheriou, Evangelos</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sebastian, Abu</au><au>Le Gallo, Manuel</au><au>Burr, Geoffrey W.</au><au>Kim, Sangbum</au><au>BrightSky, Matthew</au><au>Eleftheriou, Evangelos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tutorial: Brain-inspired computing using phase-change memory devices</atitle><jtitle>Journal of applied physics</jtitle><date>2018-09-21</date><risdate>2018</risdate><volume>124</volume><issue>11</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>There is a significant need to build efficient non-von Neumann computing systems for highly data-centric artificial intelligence related applications. Brain-inspired computing is one such approach that shows significant promise. Memory is expected to play a key role in this form of computing and, in particular, phase-change memory (PCM), arguably the most advanced emerging non-volatile memory technology. Given a lack of comprehensive understanding of the working principles of the brain, brain-inspired computing is likely to be realized in multiple levels of inspiration. In the first level of inspiration, the idea would be to build computing units where memory and processing co-exist in some form. Computational memory is an example where the physical attributes and the state dynamics of memory devices are exploited to perform certain computational tasks in the memory itself with very high areal and energy efficiency. In a second level of brain-inspired computing using PCM devices, one could design a co-processor comprising multiple cross-bar arrays of PCM devices to accelerate the training of deep neural networks. PCM technology could also play a key role in the space of specialized computing substrates for spiking neural networks, and this can be viewed as the third level of brain-inspired computing using these devices.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5042413</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-5717-2549</orcidid><orcidid>https://orcid.org/0000-0003-1600-6151</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2018-09, Vol.124 (11)
issn 0021-8979
1089-7550
language eng
recordid cdi_scitation_primary_10_1063_1_5042413
source AIP Journals Complete; Alma/SFX Local Collection
subjects Applied physics
Artificial neural networks
Brain
Computation
Computer memory
Inspiration
Memory devices
Memory tasks
Microprocessors
Neural networks
Phase change
Phase transitions
Substrates
title Tutorial: Brain-inspired computing using phase-change memory devices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T15%3A45%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tutorial:%20Brain-inspired%20computing%20using%20phase-change%20memory%20devices&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Sebastian,%20Abu&rft.date=2018-09-21&rft.volume=124&rft.issue=11&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/1.5042413&rft_dat=%3Cproquest_scita%3E2108595707%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2108595707&rft_id=info:pmid/&rfr_iscdi=true