Analytic study of (3+1) - dimensional Kadomstev-Petviashvili-Boussinesq equation: Painlevé analysis and exact solutions
In this article, (3+1) - dimensional Kadomstev-Petviashvili (KP) - Boussinesq equation, representing propagation of waves in nonlinear and dispersive media, is examined by locating movable critical points with aid of Painlevé analysis and it has been found that this equation passes Painlevé test whi...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 1975 |
creator | Verma, Pallavi Kaur, Lakhveer |
description | In this article, (3+1) - dimensional Kadomstev-Petviashvili (KP) - Boussinesq equation, representing propagation of waves in nonlinear and dispersive media, is examined by locating movable critical points with aid of Painlevé analysis and it has been found that this equation passes Painlevé test which implies affirmation towards the complete integrability. Bilinear equation is constructed through truncated Painlevé expansion along with Bell polynomial approach, which further enriches the solution structure and then abundant exact solutions involving various arbitrary constants are furnished in uniform manner by using novel test function. It is worth to mention that completely new and different solutions are obtained from those reported in the literature. |
doi_str_mv | 10.1063/1.5042192 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_5042192</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2088356256</sourcerecordid><originalsourceid>FETCH-LOGICAL-c258t-a324abc8ff0e5e8a60afffd2019c389dfe5cf0f0e7d658fad2120e14083a82653</originalsourceid><addsrcrecordid>eNotkMtOwzAURC0EEqWw4A8sseEhFz9ix2FXKl6iEl2AxC4ysS1cpUmb60TtJ_Ed_Bgp7eqOdI9GM4PQOaMjRpW4ZSNJE84yfoAGTEpGUsXUIRpQmiWEJ-LzGJ0AzCnlWZrqAVqPK1NuYigwxNZucO3xpbhhV5hgGxauglD3AH41tl5AdB2ZudgFA99dKAO5r1uAUDlYYbdqTezhOzwzoSpd9_uDzdYbAvTCYrc2RcRQl-0Wg1N05E0J7mx_h-jj8eF98kymb08vk_GUFFzqSIzgifkqtPfUSaeNosZ7bzllWSF0Zr2Thaf9M7VKam8sZ5w6llAtjOZKiiG62Pkum3rVOoj5vG6bPhjknGotpOJS9dT1joIixP8e-bIJC9Nsckbz7bI5y_fLij8gtm0Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2088356256</pqid></control><display><type>conference_proceeding</type><title>Analytic study of (3+1) - dimensional Kadomstev-Petviashvili-Boussinesq equation: Painlevé analysis and exact solutions</title><source>American Institute of Physics (AIP) Journals</source><creator>Verma, Pallavi ; Kaur, Lakhveer</creator><contributor>Sharma, Rajesh</contributor><creatorcontrib>Verma, Pallavi ; Kaur, Lakhveer ; Sharma, Rajesh</creatorcontrib><description>In this article, (3+1) - dimensional Kadomstev-Petviashvili (KP) - Boussinesq equation, representing propagation of waves in nonlinear and dispersive media, is examined by locating movable critical points with aid of Painlevé analysis and it has been found that this equation passes Painlevé test which implies affirmation towards the complete integrability. Bilinear equation is constructed through truncated Painlevé expansion along with Bell polynomial approach, which further enriches the solution structure and then abundant exact solutions involving various arbitrary constants are furnished in uniform manner by using novel test function. It is worth to mention that completely new and different solutions are obtained from those reported in the literature.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.5042192</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Boussinesq equations ; Combinatorial analysis ; Dimensional analysis ; Exact solutions ; Integral equations ; Mathematical analysis ; Polynomials ; Wave propagation</subject><ispartof>AIP conference proceedings, 2018, Vol.1975 (1)</ispartof><rights>Author(s)</rights><rights>2018 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c258t-a324abc8ff0e5e8a60afffd2019c389dfe5cf0f0e7d658fad2120e14083a82653</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/1.5042192$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,790,4497,23910,23911,25119,27903,27904,76131</link.rule.ids></links><search><contributor>Sharma, Rajesh</contributor><creatorcontrib>Verma, Pallavi</creatorcontrib><creatorcontrib>Kaur, Lakhveer</creatorcontrib><title>Analytic study of (3+1) - dimensional Kadomstev-Petviashvili-Boussinesq equation: Painlevé analysis and exact solutions</title><title>AIP conference proceedings</title><description>In this article, (3+1) - dimensional Kadomstev-Petviashvili (KP) - Boussinesq equation, representing propagation of waves in nonlinear and dispersive media, is examined by locating movable critical points with aid of Painlevé analysis and it has been found that this equation passes Painlevé test which implies affirmation towards the complete integrability. Bilinear equation is constructed through truncated Painlevé expansion along with Bell polynomial approach, which further enriches the solution structure and then abundant exact solutions involving various arbitrary constants are furnished in uniform manner by using novel test function. It is worth to mention that completely new and different solutions are obtained from those reported in the literature.</description><subject>Boussinesq equations</subject><subject>Combinatorial analysis</subject><subject>Dimensional analysis</subject><subject>Exact solutions</subject><subject>Integral equations</subject><subject>Mathematical analysis</subject><subject>Polynomials</subject><subject>Wave propagation</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2018</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkMtOwzAURC0EEqWw4A8sseEhFz9ix2FXKl6iEl2AxC4ysS1cpUmb60TtJ_Ed_Bgp7eqOdI9GM4PQOaMjRpW4ZSNJE84yfoAGTEpGUsXUIRpQmiWEJ-LzGJ0AzCnlWZrqAVqPK1NuYigwxNZucO3xpbhhV5hgGxauglD3AH41tl5AdB2ZudgFA99dKAO5r1uAUDlYYbdqTezhOzwzoSpd9_uDzdYbAvTCYrc2RcRQl-0Wg1N05E0J7mx_h-jj8eF98kymb08vk_GUFFzqSIzgifkqtPfUSaeNosZ7bzllWSF0Zr2Thaf9M7VKam8sZ5w6llAtjOZKiiG62Pkum3rVOoj5vG6bPhjknGotpOJS9dT1joIixP8e-bIJC9Nsckbz7bI5y_fLij8gtm0Y</recordid><startdate>20180613</startdate><enddate>20180613</enddate><creator>Verma, Pallavi</creator><creator>Kaur, Lakhveer</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20180613</creationdate><title>Analytic study of (3+1) - dimensional Kadomstev-Petviashvili-Boussinesq equation: Painlevé analysis and exact solutions</title><author>Verma, Pallavi ; Kaur, Lakhveer</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c258t-a324abc8ff0e5e8a60afffd2019c389dfe5cf0f0e7d658fad2120e14083a82653</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Boussinesq equations</topic><topic>Combinatorial analysis</topic><topic>Dimensional analysis</topic><topic>Exact solutions</topic><topic>Integral equations</topic><topic>Mathematical analysis</topic><topic>Polynomials</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Verma, Pallavi</creatorcontrib><creatorcontrib>Kaur, Lakhveer</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Verma, Pallavi</au><au>Kaur, Lakhveer</au><au>Sharma, Rajesh</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Analytic study of (3+1) - dimensional Kadomstev-Petviashvili-Boussinesq equation: Painlevé analysis and exact solutions</atitle><btitle>AIP conference proceedings</btitle><date>2018-06-13</date><risdate>2018</risdate><volume>1975</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>In this article, (3+1) - dimensional Kadomstev-Petviashvili (KP) - Boussinesq equation, representing propagation of waves in nonlinear and dispersive media, is examined by locating movable critical points with aid of Painlevé analysis and it has been found that this equation passes Painlevé test which implies affirmation towards the complete integrability. Bilinear equation is constructed through truncated Painlevé expansion along with Bell polynomial approach, which further enriches the solution structure and then abundant exact solutions involving various arbitrary constants are furnished in uniform manner by using novel test function. It is worth to mention that completely new and different solutions are obtained from those reported in the literature.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5042192</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2018, Vol.1975 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_scitation_primary_10_1063_1_5042192 |
source | American Institute of Physics (AIP) Journals |
subjects | Boussinesq equations Combinatorial analysis Dimensional analysis Exact solutions Integral equations Mathematical analysis Polynomials Wave propagation |
title | Analytic study of (3+1) - dimensional Kadomstev-Petviashvili-Boussinesq equation: Painlevé analysis and exact solutions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T18%3A08%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Analytic%20study%20of%20(3+1)%20-%20dimensional%20Kadomstev-Petviashvili-Boussinesq%20equation:%20Painlev%C3%A9%20analysis%20and%20exact%20solutions&rft.btitle=AIP%20conference%20proceedings&rft.au=Verma,%20Pallavi&rft.date=2018-06-13&rft.volume=1975&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/1.5042192&rft_dat=%3Cproquest_scita%3E2088356256%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2088356256&rft_id=info:pmid/&rfr_iscdi=true |