Analytic study of (3+1) - dimensional Kadomstev-Petviashvili-Boussinesq equation: Painlevé analysis and exact solutions

In this article, (3+1) - dimensional Kadomstev-Petviashvili (KP) - Boussinesq equation, representing propagation of waves in nonlinear and dispersive media, is examined by locating movable critical points with aid of Painlevé analysis and it has been found that this equation passes Painlevé test whi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Verma, Pallavi, Kaur, Lakhveer
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 1975
creator Verma, Pallavi
Kaur, Lakhveer
description In this article, (3+1) - dimensional Kadomstev-Petviashvili (KP) - Boussinesq equation, representing propagation of waves in nonlinear and dispersive media, is examined by locating movable critical points with aid of Painlevé analysis and it has been found that this equation passes Painlevé test which implies affirmation towards the complete integrability. Bilinear equation is constructed through truncated Painlevé expansion along with Bell polynomial approach, which further enriches the solution structure and then abundant exact solutions involving various arbitrary constants are furnished in uniform manner by using novel test function. It is worth to mention that completely new and different solutions are obtained from those reported in the literature.
doi_str_mv 10.1063/1.5042192
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_5042192</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2088356256</sourcerecordid><originalsourceid>FETCH-LOGICAL-c258t-a324abc8ff0e5e8a60afffd2019c389dfe5cf0f0e7d658fad2120e14083a82653</originalsourceid><addsrcrecordid>eNotkMtOwzAURC0EEqWw4A8sseEhFz9ix2FXKl6iEl2AxC4ysS1cpUmb60TtJ_Ed_Bgp7eqOdI9GM4PQOaMjRpW4ZSNJE84yfoAGTEpGUsXUIRpQmiWEJ-LzGJ0AzCnlWZrqAVqPK1NuYigwxNZucO3xpbhhV5hgGxauglD3AH41tl5AdB2ZudgFA99dKAO5r1uAUDlYYbdqTezhOzwzoSpd9_uDzdYbAvTCYrc2RcRQl-0Wg1N05E0J7mx_h-jj8eF98kymb08vk_GUFFzqSIzgifkqtPfUSaeNosZ7bzllWSF0Zr2Thaf9M7VKam8sZ5w6llAtjOZKiiG62Pkum3rVOoj5vG6bPhjknGotpOJS9dT1joIixP8e-bIJC9Nsckbz7bI5y_fLij8gtm0Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2088356256</pqid></control><display><type>conference_proceeding</type><title>Analytic study of (3+1) - dimensional Kadomstev-Petviashvili-Boussinesq equation: Painlevé analysis and exact solutions</title><source>American Institute of Physics (AIP) Journals</source><creator>Verma, Pallavi ; Kaur, Lakhveer</creator><contributor>Sharma, Rajesh</contributor><creatorcontrib>Verma, Pallavi ; Kaur, Lakhveer ; Sharma, Rajesh</creatorcontrib><description>In this article, (3+1) - dimensional Kadomstev-Petviashvili (KP) - Boussinesq equation, representing propagation of waves in nonlinear and dispersive media, is examined by locating movable critical points with aid of Painlevé analysis and it has been found that this equation passes Painlevé test which implies affirmation towards the complete integrability. Bilinear equation is constructed through truncated Painlevé expansion along with Bell polynomial approach, which further enriches the solution structure and then abundant exact solutions involving various arbitrary constants are furnished in uniform manner by using novel test function. It is worth to mention that completely new and different solutions are obtained from those reported in the literature.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.5042192</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Boussinesq equations ; Combinatorial analysis ; Dimensional analysis ; Exact solutions ; Integral equations ; Mathematical analysis ; Polynomials ; Wave propagation</subject><ispartof>AIP conference proceedings, 2018, Vol.1975 (1)</ispartof><rights>Author(s)</rights><rights>2018 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c258t-a324abc8ff0e5e8a60afffd2019c389dfe5cf0f0e7d658fad2120e14083a82653</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/1.5042192$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,790,4497,23910,23911,25119,27903,27904,76131</link.rule.ids></links><search><contributor>Sharma, Rajesh</contributor><creatorcontrib>Verma, Pallavi</creatorcontrib><creatorcontrib>Kaur, Lakhveer</creatorcontrib><title>Analytic study of (3+1) - dimensional Kadomstev-Petviashvili-Boussinesq equation: Painlevé analysis and exact solutions</title><title>AIP conference proceedings</title><description>In this article, (3+1) - dimensional Kadomstev-Petviashvili (KP) - Boussinesq equation, representing propagation of waves in nonlinear and dispersive media, is examined by locating movable critical points with aid of Painlevé analysis and it has been found that this equation passes Painlevé test which implies affirmation towards the complete integrability. Bilinear equation is constructed through truncated Painlevé expansion along with Bell polynomial approach, which further enriches the solution structure and then abundant exact solutions involving various arbitrary constants are furnished in uniform manner by using novel test function. It is worth to mention that completely new and different solutions are obtained from those reported in the literature.</description><subject>Boussinesq equations</subject><subject>Combinatorial analysis</subject><subject>Dimensional analysis</subject><subject>Exact solutions</subject><subject>Integral equations</subject><subject>Mathematical analysis</subject><subject>Polynomials</subject><subject>Wave propagation</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2018</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkMtOwzAURC0EEqWw4A8sseEhFz9ix2FXKl6iEl2AxC4ysS1cpUmb60TtJ_Ed_Bgp7eqOdI9GM4PQOaMjRpW4ZSNJE84yfoAGTEpGUsXUIRpQmiWEJ-LzGJ0AzCnlWZrqAVqPK1NuYigwxNZucO3xpbhhV5hgGxauglD3AH41tl5AdB2ZudgFA99dKAO5r1uAUDlYYbdqTezhOzwzoSpd9_uDzdYbAvTCYrc2RcRQl-0Wg1N05E0J7mx_h-jj8eF98kymb08vk_GUFFzqSIzgifkqtPfUSaeNosZ7bzllWSF0Zr2Thaf9M7VKam8sZ5w6llAtjOZKiiG62Pkum3rVOoj5vG6bPhjknGotpOJS9dT1joIixP8e-bIJC9Nsckbz7bI5y_fLij8gtm0Y</recordid><startdate>20180613</startdate><enddate>20180613</enddate><creator>Verma, Pallavi</creator><creator>Kaur, Lakhveer</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20180613</creationdate><title>Analytic study of (3+1) - dimensional Kadomstev-Petviashvili-Boussinesq equation: Painlevé analysis and exact solutions</title><author>Verma, Pallavi ; Kaur, Lakhveer</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c258t-a324abc8ff0e5e8a60afffd2019c389dfe5cf0f0e7d658fad2120e14083a82653</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Boussinesq equations</topic><topic>Combinatorial analysis</topic><topic>Dimensional analysis</topic><topic>Exact solutions</topic><topic>Integral equations</topic><topic>Mathematical analysis</topic><topic>Polynomials</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Verma, Pallavi</creatorcontrib><creatorcontrib>Kaur, Lakhveer</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Verma, Pallavi</au><au>Kaur, Lakhveer</au><au>Sharma, Rajesh</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Analytic study of (3+1) - dimensional Kadomstev-Petviashvili-Boussinesq equation: Painlevé analysis and exact solutions</atitle><btitle>AIP conference proceedings</btitle><date>2018-06-13</date><risdate>2018</risdate><volume>1975</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>In this article, (3+1) - dimensional Kadomstev-Petviashvili (KP) - Boussinesq equation, representing propagation of waves in nonlinear and dispersive media, is examined by locating movable critical points with aid of Painlevé analysis and it has been found that this equation passes Painlevé test which implies affirmation towards the complete integrability. Bilinear equation is constructed through truncated Painlevé expansion along with Bell polynomial approach, which further enriches the solution structure and then abundant exact solutions involving various arbitrary constants are furnished in uniform manner by using novel test function. It is worth to mention that completely new and different solutions are obtained from those reported in the literature.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5042192</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2018, Vol.1975 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_scitation_primary_10_1063_1_5042192
source American Institute of Physics (AIP) Journals
subjects Boussinesq equations
Combinatorial analysis
Dimensional analysis
Exact solutions
Integral equations
Mathematical analysis
Polynomials
Wave propagation
title Analytic study of (3+1) - dimensional Kadomstev-Petviashvili-Boussinesq equation: Painlevé analysis and exact solutions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T18%3A08%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Analytic%20study%20of%20(3+1)%20-%20dimensional%20Kadomstev-Petviashvili-Boussinesq%20equation:%20Painlev%C3%A9%20analysis%20and%20exact%20solutions&rft.btitle=AIP%20conference%20proceedings&rft.au=Verma,%20Pallavi&rft.date=2018-06-13&rft.volume=1975&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/1.5042192&rft_dat=%3Cproquest_scita%3E2088356256%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2088356256&rft_id=info:pmid/&rfr_iscdi=true