Accurate numerical modeling of residual stress fields induced by laser shock peening

To improve the accuracy of numerical simulation of laser shock peening, a novel model is developed to predict residual stress distribution. An optical beam measurement system, a white light confocal displacement sensor, and other sensors are used to measure the laser shock peening parameters. Based...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIP advances 2018-09, Vol.8 (9), p.095203-095203-13
Hauptverfasser: Sun, Boyu, Qiao, Hongchao, Zhao, Jibin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 095203-13
container_issue 9
container_start_page 095203
container_title AIP advances
container_volume 8
creator Sun, Boyu
Qiao, Hongchao
Zhao, Jibin
description To improve the accuracy of numerical simulation of laser shock peening, a novel model is developed to predict residual stress distribution. An optical beam measurement system, a white light confocal displacement sensor, and other sensors are used to measure the laser shock peening parameters. Based on actual parameters, the model of shock wave pressure spatial distribution is established. Effects of key parameters, viz., overlapping rate and laser beam quality on residual stress distribution are analyzed by the proposed model. The influence mechanism of laser beam quality on residual stress hole is analyzed. Compared with conventional models, it is found that the proposed model has higher precision to predict residual stress distribution. The processing efficiency and strengthening effect can be improved by optimizing the overlapping rate and laser beam quality. The edge gradient of shock wave pressure reduces the intensity of the release wave convergence at the center, which can improve the uniformity of residual stress distribution. The proposed model can not only improve the accuracy of numerical simulation, but also provide guidance for optimizing the laser beam quality.
doi_str_mv 10.1063/1.5039674
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_5039674</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_a0480f413488478f957f1e56374a112a</doaj_id><sourcerecordid>2099653176</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-7853cc7ac939a07ea58afe84851177f80786e76ab951cffac49011e5578c13ed3</originalsourceid><addsrcrecordid>eNqdkUFLJDEQhZtFQVEP_oOAJ4XRVCfpJEcRdQVhL3oONenKmNmezph0C_57446se966VPH46lXBa5pT4JfAO3EFl4oL22n5ozlsQZmFaNtu75_5oDkpZc1rSQvcyMPm6dr7OeNEbJw3lKPHgW1ST0McVywFlqnEfq5imepYWIg09IXFsZ899Wz5zgYslFl5Sf432xKNdfG42Q84FDr56kfN893t083PxeOv-4eb68eFl62ZFtoo4b1Gb4VFrgmVwUBGGgWgdTBcm450h0urwIeAXloOQEpp40FQL46ah51vn3DttjluML-7hNH9EVJeOcxT9AM55NLwIEFIY6Q2wSodqlUntESAFqvX2c5rm9PrTGVy6zTnsb7vWm5tpwTorlLnO8rnVEqm8PcqcPeZgQP3lUFlL3Zs8XHCKabx_-C3lL9Bt-2D-AByr5MY</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2099653176</pqid></control><display><type>article</type><title>Accurate numerical modeling of residual stress fields induced by laser shock peening</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Sun, Boyu ; Qiao, Hongchao ; Zhao, Jibin</creator><creatorcontrib>Sun, Boyu ; Qiao, Hongchao ; Zhao, Jibin</creatorcontrib><description>To improve the accuracy of numerical simulation of laser shock peening, a novel model is developed to predict residual stress distribution. An optical beam measurement system, a white light confocal displacement sensor, and other sensors are used to measure the laser shock peening parameters. Based on actual parameters, the model of shock wave pressure spatial distribution is established. Effects of key parameters, viz., overlapping rate and laser beam quality on residual stress distribution are analyzed by the proposed model. The influence mechanism of laser beam quality on residual stress hole is analyzed. Compared with conventional models, it is found that the proposed model has higher precision to predict residual stress distribution. The processing efficiency and strengthening effect can be improved by optimizing the overlapping rate and laser beam quality. The edge gradient of shock wave pressure reduces the intensity of the release wave convergence at the center, which can improve the uniformity of residual stress distribution. The proposed model can not only improve the accuracy of numerical simulation, but also provide guidance for optimizing the laser beam quality.</description><identifier>ISSN: 2158-3226</identifier><identifier>EISSN: 2158-3226</identifier><identifier>DOI: 10.1063/1.5039674</identifier><identifier>CODEN: AAIDBI</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Computer simulation ; Laser beams ; Laser shock processing ; Lasers ; Mathematical models ; Model accuracy ; Parameters ; Peening ; Residual stress ; Shock waves ; Spatial distribution ; Stress concentration ; Stress distribution ; White light</subject><ispartof>AIP advances, 2018-09, Vol.8 (9), p.095203-095203-13</ispartof><rights>Author(s)</rights><rights>2018 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-7853cc7ac939a07ea58afe84851177f80786e76ab951cffac49011e5578c13ed3</citedby><cites>FETCH-LOGICAL-c428t-7853cc7ac939a07ea58afe84851177f80786e76ab951cffac49011e5578c13ed3</cites><orcidid>0000-0002-6721-8616</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,2102,27924,27925</link.rule.ids></links><search><creatorcontrib>Sun, Boyu</creatorcontrib><creatorcontrib>Qiao, Hongchao</creatorcontrib><creatorcontrib>Zhao, Jibin</creatorcontrib><title>Accurate numerical modeling of residual stress fields induced by laser shock peening</title><title>AIP advances</title><description>To improve the accuracy of numerical simulation of laser shock peening, a novel model is developed to predict residual stress distribution. An optical beam measurement system, a white light confocal displacement sensor, and other sensors are used to measure the laser shock peening parameters. Based on actual parameters, the model of shock wave pressure spatial distribution is established. Effects of key parameters, viz., overlapping rate and laser beam quality on residual stress distribution are analyzed by the proposed model. The influence mechanism of laser beam quality on residual stress hole is analyzed. Compared with conventional models, it is found that the proposed model has higher precision to predict residual stress distribution. The processing efficiency and strengthening effect can be improved by optimizing the overlapping rate and laser beam quality. The edge gradient of shock wave pressure reduces the intensity of the release wave convergence at the center, which can improve the uniformity of residual stress distribution. The proposed model can not only improve the accuracy of numerical simulation, but also provide guidance for optimizing the laser beam quality.</description><subject>Computer simulation</subject><subject>Laser beams</subject><subject>Laser shock processing</subject><subject>Lasers</subject><subject>Mathematical models</subject><subject>Model accuracy</subject><subject>Parameters</subject><subject>Peening</subject><subject>Residual stress</subject><subject>Shock waves</subject><subject>Spatial distribution</subject><subject>Stress concentration</subject><subject>Stress distribution</subject><subject>White light</subject><issn>2158-3226</issn><issn>2158-3226</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqdkUFLJDEQhZtFQVEP_oOAJ4XRVCfpJEcRdQVhL3oONenKmNmezph0C_57446se966VPH46lXBa5pT4JfAO3EFl4oL22n5ozlsQZmFaNtu75_5oDkpZc1rSQvcyMPm6dr7OeNEbJw3lKPHgW1ST0McVywFlqnEfq5imepYWIg09IXFsZ899Wz5zgYslFl5Sf432xKNdfG42Q84FDr56kfN893t083PxeOv-4eb68eFl62ZFtoo4b1Gb4VFrgmVwUBGGgWgdTBcm450h0urwIeAXloOQEpp40FQL46ah51vn3DttjluML-7hNH9EVJeOcxT9AM55NLwIEFIY6Q2wSodqlUntESAFqvX2c5rm9PrTGVy6zTnsb7vWm5tpwTorlLnO8rnVEqm8PcqcPeZgQP3lUFlL3Zs8XHCKabx_-C3lL9Bt-2D-AByr5MY</recordid><startdate>201809</startdate><enddate>201809</enddate><creator>Sun, Boyu</creator><creator>Qiao, Hongchao</creator><creator>Zhao, Jibin</creator><general>American Institute of Physics</general><general>AIP Publishing LLC</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6721-8616</orcidid></search><sort><creationdate>201809</creationdate><title>Accurate numerical modeling of residual stress fields induced by laser shock peening</title><author>Sun, Boyu ; Qiao, Hongchao ; Zhao, Jibin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-7853cc7ac939a07ea58afe84851177f80786e76ab951cffac49011e5578c13ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Computer simulation</topic><topic>Laser beams</topic><topic>Laser shock processing</topic><topic>Lasers</topic><topic>Mathematical models</topic><topic>Model accuracy</topic><topic>Parameters</topic><topic>Peening</topic><topic>Residual stress</topic><topic>Shock waves</topic><topic>Spatial distribution</topic><topic>Stress concentration</topic><topic>Stress distribution</topic><topic>White light</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Boyu</creatorcontrib><creatorcontrib>Qiao, Hongchao</creatorcontrib><creatorcontrib>Zhao, Jibin</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>AIP advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Boyu</au><au>Qiao, Hongchao</au><au>Zhao, Jibin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accurate numerical modeling of residual stress fields induced by laser shock peening</atitle><jtitle>AIP advances</jtitle><date>2018-09</date><risdate>2018</risdate><volume>8</volume><issue>9</issue><spage>095203</spage><epage>095203-13</epage><pages>095203-095203-13</pages><issn>2158-3226</issn><eissn>2158-3226</eissn><coden>AAIDBI</coden><abstract>To improve the accuracy of numerical simulation of laser shock peening, a novel model is developed to predict residual stress distribution. An optical beam measurement system, a white light confocal displacement sensor, and other sensors are used to measure the laser shock peening parameters. Based on actual parameters, the model of shock wave pressure spatial distribution is established. Effects of key parameters, viz., overlapping rate and laser beam quality on residual stress distribution are analyzed by the proposed model. The influence mechanism of laser beam quality on residual stress hole is analyzed. Compared with conventional models, it is found that the proposed model has higher precision to predict residual stress distribution. The processing efficiency and strengthening effect can be improved by optimizing the overlapping rate and laser beam quality. The edge gradient of shock wave pressure reduces the intensity of the release wave convergence at the center, which can improve the uniformity of residual stress distribution. The proposed model can not only improve the accuracy of numerical simulation, but also provide guidance for optimizing the laser beam quality.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5039674</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-6721-8616</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2158-3226
ispartof AIP advances, 2018-09, Vol.8 (9), p.095203-095203-13
issn 2158-3226
2158-3226
language eng
recordid cdi_scitation_primary_10_1063_1_5039674
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Computer simulation
Laser beams
Laser shock processing
Lasers
Mathematical models
Model accuracy
Parameters
Peening
Residual stress
Shock waves
Spatial distribution
Stress concentration
Stress distribution
White light
title Accurate numerical modeling of residual stress fields induced by laser shock peening
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A23%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accurate%20numerical%20modeling%20of%20residual%20stress%20fields%20induced%20by%20laser%20shock%20peening&rft.jtitle=AIP%20advances&rft.au=Sun,%20Boyu&rft.date=2018-09&rft.volume=8&rft.issue=9&rft.spage=095203&rft.epage=095203-13&rft.pages=095203-095203-13&rft.issn=2158-3226&rft.eissn=2158-3226&rft.coden=AAIDBI&rft_id=info:doi/10.1063/1.5039674&rft_dat=%3Cproquest_scita%3E2099653176%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2099653176&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_a0480f413488478f957f1e56374a112a&rfr_iscdi=true