MixDroid: A multi-features and multi-classifiers bagging system for Android malware detection
In the past decade, Android platform has rapidly taken over the mobile market for its superior convenience and open source characteristics. However, with the popularity of Android, malwares targeting on Android devices are increasing rapidly, while the conventional rule-based and expert-experienced...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 1967 |
creator | Huang, Weiqing Hou, Erhang Zheng, Liang Feng, Weimiao |
description | In the past decade, Android platform has rapidly taken over the mobile market for its superior convenience and open source characteristics. However, with the popularity of Android, malwares targeting on Android devices are increasing rapidly, while the conventional rule-based and expert-experienced approaches are no longer able to handle such explosive growth. In this paper, combining with the theory of natural language processing and machine learning, we not only implement the basic feature extraction of permission application features, but also propose two innovative schemes of feature extraction: Dalvik opcode features and malicious code image, and implement an automatic Android malware detection system MixDroid which is based on multi-features and multi-classifiers. According to our experiment results on 20,000 Android applications, detection accuracy of MixDroid is 98.1%, which proves our schemes’ effectiveness in Android malware detection. |
doi_str_mv | 10.1063/1.5038987 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_5038987</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2088680554</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-dc6e5b81ff9034c09bf266a5fcfafc89c831c63433c4dee564e67fef68c43d893</originalsourceid><addsrcrecordid>eNp9kEtLAzEcxIMoWKsHv0HAm7A12Tw2663UJ1S8KHiRkCb_lJR91CSr9tvbYsGbp4Hhx8wwCJ1TMqFEsis6EYSpWlUHaESFoEUlqTxEI0JqXpScvR2jk5RWhJR1VakRen8K3zexD-4aT3E7NDkUHkweIiRsOre3bGNSCj5ATHhhlsvQLXHapAwt9n3E087tInBrmi8TATvIYHPou1N05E2T4GyvY_R6d_syeyjmz_ePs-m8sKxUuXBWglgo6n1NGLekXvhSSiO89cZbVVvFqJWMM2a5AxCSg6w8eKksZ07VbIwufnPXsf8YIGW96ofYbSt1SZSSigjBt9TlL5VsyGa3T69jaE3caEr07j5N9f6-_-DPPv6Beu08-wFTk3ID</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2088680554</pqid></control><display><type>conference_proceeding</type><title>MixDroid: A multi-features and multi-classifiers bagging system for Android malware detection</title><source>AIP Journals Complete</source><creator>Huang, Weiqing ; Hou, Erhang ; Zheng, Liang ; Feng, Weimiao</creator><contributor>Fang, Dajing ; Zhu, Shanhong ; Kuang, Tao</contributor><creatorcontrib>Huang, Weiqing ; Hou, Erhang ; Zheng, Liang ; Feng, Weimiao ; Fang, Dajing ; Zhu, Shanhong ; Kuang, Tao</creatorcontrib><description>In the past decade, Android platform has rapidly taken over the mobile market for its superior convenience and open source characteristics. However, with the popularity of Android, malwares targeting on Android devices are increasing rapidly, while the conventional rule-based and expert-experienced approaches are no longer able to handle such explosive growth. In this paper, combining with the theory of natural language processing and machine learning, we not only implement the basic feature extraction of permission application features, but also propose two innovative schemes of feature extraction: Dalvik opcode features and malicious code image, and implement an automatic Android malware detection system MixDroid which is based on multi-features and multi-classifiers. According to our experiment results on 20,000 Android applications, detection accuracy of MixDroid is 98.1%, which proves our schemes’ effectiveness in Android malware detection.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.5038987</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Classifiers ; Feature extraction ; Image detection ; Machine learning ; Malware ; Mobile operating systems ; Natural language processing</subject><ispartof>AIP conference proceedings, 2018, Vol.1967 (1)</ispartof><rights>Author(s)</rights><rights>2018 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-dc6e5b81ff9034c09bf266a5fcfafc89c831c63433c4dee564e67fef68c43d893</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/1.5038987$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,790,4497,23910,23911,25119,27903,27904,76130</link.rule.ids></links><search><contributor>Fang, Dajing</contributor><contributor>Zhu, Shanhong</contributor><contributor>Kuang, Tao</contributor><creatorcontrib>Huang, Weiqing</creatorcontrib><creatorcontrib>Hou, Erhang</creatorcontrib><creatorcontrib>Zheng, Liang</creatorcontrib><creatorcontrib>Feng, Weimiao</creatorcontrib><title>MixDroid: A multi-features and multi-classifiers bagging system for Android malware detection</title><title>AIP conference proceedings</title><description>In the past decade, Android platform has rapidly taken over the mobile market for its superior convenience and open source characteristics. However, with the popularity of Android, malwares targeting on Android devices are increasing rapidly, while the conventional rule-based and expert-experienced approaches are no longer able to handle such explosive growth. In this paper, combining with the theory of natural language processing and machine learning, we not only implement the basic feature extraction of permission application features, but also propose two innovative schemes of feature extraction: Dalvik opcode features and malicious code image, and implement an automatic Android malware detection system MixDroid which is based on multi-features and multi-classifiers. According to our experiment results on 20,000 Android applications, detection accuracy of MixDroid is 98.1%, which proves our schemes’ effectiveness in Android malware detection.</description><subject>Classifiers</subject><subject>Feature extraction</subject><subject>Image detection</subject><subject>Machine learning</subject><subject>Malware</subject><subject>Mobile operating systems</subject><subject>Natural language processing</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2018</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kEtLAzEcxIMoWKsHv0HAm7A12Tw2663UJ1S8KHiRkCb_lJR91CSr9tvbYsGbp4Hhx8wwCJ1TMqFEsis6EYSpWlUHaESFoEUlqTxEI0JqXpScvR2jk5RWhJR1VakRen8K3zexD-4aT3E7NDkUHkweIiRsOre3bGNSCj5ATHhhlsvQLXHapAwt9n3E087tInBrmi8TATvIYHPou1N05E2T4GyvY_R6d_syeyjmz_ePs-m8sKxUuXBWglgo6n1NGLekXvhSSiO89cZbVVvFqJWMM2a5AxCSg6w8eKksZ07VbIwufnPXsf8YIGW96ofYbSt1SZSSigjBt9TlL5VsyGa3T69jaE3caEr07j5N9f6-_-DPPv6Beu08-wFTk3ID</recordid><startdate>20180523</startdate><enddate>20180523</enddate><creator>Huang, Weiqing</creator><creator>Hou, Erhang</creator><creator>Zheng, Liang</creator><creator>Feng, Weimiao</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20180523</creationdate><title>MixDroid: A multi-features and multi-classifiers bagging system for Android malware detection</title><author>Huang, Weiqing ; Hou, Erhang ; Zheng, Liang ; Feng, Weimiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-dc6e5b81ff9034c09bf266a5fcfafc89c831c63433c4dee564e67fef68c43d893</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Classifiers</topic><topic>Feature extraction</topic><topic>Image detection</topic><topic>Machine learning</topic><topic>Malware</topic><topic>Mobile operating systems</topic><topic>Natural language processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Weiqing</creatorcontrib><creatorcontrib>Hou, Erhang</creatorcontrib><creatorcontrib>Zheng, Liang</creatorcontrib><creatorcontrib>Feng, Weimiao</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Weiqing</au><au>Hou, Erhang</au><au>Zheng, Liang</au><au>Feng, Weimiao</au><au>Fang, Dajing</au><au>Zhu, Shanhong</au><au>Kuang, Tao</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>MixDroid: A multi-features and multi-classifiers bagging system for Android malware detection</atitle><btitle>AIP conference proceedings</btitle><date>2018-05-23</date><risdate>2018</risdate><volume>1967</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>In the past decade, Android platform has rapidly taken over the mobile market for its superior convenience and open source characteristics. However, with the popularity of Android, malwares targeting on Android devices are increasing rapidly, while the conventional rule-based and expert-experienced approaches are no longer able to handle such explosive growth. In this paper, combining with the theory of natural language processing and machine learning, we not only implement the basic feature extraction of permission application features, but also propose two innovative schemes of feature extraction: Dalvik opcode features and malicious code image, and implement an automatic Android malware detection system MixDroid which is based on multi-features and multi-classifiers. According to our experiment results on 20,000 Android applications, detection accuracy of MixDroid is 98.1%, which proves our schemes’ effectiveness in Android malware detection.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5038987</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2018, Vol.1967 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_scitation_primary_10_1063_1_5038987 |
source | AIP Journals Complete |
subjects | Classifiers Feature extraction Image detection Machine learning Malware Mobile operating systems Natural language processing |
title | MixDroid: A multi-features and multi-classifiers bagging system for Android malware detection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T15%3A05%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=MixDroid:%20A%20multi-features%20and%20multi-classifiers%20bagging%20system%20for%20Android%20malware%20detection&rft.btitle=AIP%20conference%20proceedings&rft.au=Huang,%20Weiqing&rft.date=2018-05-23&rft.volume=1967&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/1.5038987&rft_dat=%3Cproquest_scita%3E2088680554%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2088680554&rft_id=info:pmid/&rfr_iscdi=true |