MixDroid: A multi-features and multi-classifiers bagging system for Android malware detection

In the past decade, Android platform has rapidly taken over the mobile market for its superior convenience and open source characteristics. However, with the popularity of Android, malwares targeting on Android devices are increasing rapidly, while the conventional rule-based and expert-experienced...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Huang, Weiqing, Hou, Erhang, Zheng, Liang, Feng, Weimiao
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 1967
creator Huang, Weiqing
Hou, Erhang
Zheng, Liang
Feng, Weimiao
description In the past decade, Android platform has rapidly taken over the mobile market for its superior convenience and open source characteristics. However, with the popularity of Android, malwares targeting on Android devices are increasing rapidly, while the conventional rule-based and expert-experienced approaches are no longer able to handle such explosive growth. In this paper, combining with the theory of natural language processing and machine learning, we not only implement the basic feature extraction of permission application features, but also propose two innovative schemes of feature extraction: Dalvik opcode features and malicious code image, and implement an automatic Android malware detection system MixDroid which is based on multi-features and multi-classifiers. According to our experiment results on 20,000 Android applications, detection accuracy of MixDroid is 98.1%, which proves our schemes’ effectiveness in Android malware detection.
doi_str_mv 10.1063/1.5038987
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_5038987</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2088680554</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-dc6e5b81ff9034c09bf266a5fcfafc89c831c63433c4dee564e67fef68c43d893</originalsourceid><addsrcrecordid>eNp9kEtLAzEcxIMoWKsHv0HAm7A12Tw2663UJ1S8KHiRkCb_lJR91CSr9tvbYsGbp4Hhx8wwCJ1TMqFEsis6EYSpWlUHaESFoEUlqTxEI0JqXpScvR2jk5RWhJR1VakRen8K3zexD-4aT3E7NDkUHkweIiRsOre3bGNSCj5ATHhhlsvQLXHapAwt9n3E087tInBrmi8TATvIYHPou1N05E2T4GyvY_R6d_syeyjmz_ePs-m8sKxUuXBWglgo6n1NGLekXvhSSiO89cZbVVvFqJWMM2a5AxCSg6w8eKksZ07VbIwufnPXsf8YIGW96ofYbSt1SZSSigjBt9TlL5VsyGa3T69jaE3caEr07j5N9f6-_-DPPv6Beu08-wFTk3ID</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2088680554</pqid></control><display><type>conference_proceeding</type><title>MixDroid: A multi-features and multi-classifiers bagging system for Android malware detection</title><source>AIP Journals Complete</source><creator>Huang, Weiqing ; Hou, Erhang ; Zheng, Liang ; Feng, Weimiao</creator><contributor>Fang, Dajing ; Zhu, Shanhong ; Kuang, Tao</contributor><creatorcontrib>Huang, Weiqing ; Hou, Erhang ; Zheng, Liang ; Feng, Weimiao ; Fang, Dajing ; Zhu, Shanhong ; Kuang, Tao</creatorcontrib><description>In the past decade, Android platform has rapidly taken over the mobile market for its superior convenience and open source characteristics. However, with the popularity of Android, malwares targeting on Android devices are increasing rapidly, while the conventional rule-based and expert-experienced approaches are no longer able to handle such explosive growth. In this paper, combining with the theory of natural language processing and machine learning, we not only implement the basic feature extraction of permission application features, but also propose two innovative schemes of feature extraction: Dalvik opcode features and malicious code image, and implement an automatic Android malware detection system MixDroid which is based on multi-features and multi-classifiers. According to our experiment results on 20,000 Android applications, detection accuracy of MixDroid is 98.1%, which proves our schemes’ effectiveness in Android malware detection.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.5038987</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Classifiers ; Feature extraction ; Image detection ; Machine learning ; Malware ; Mobile operating systems ; Natural language processing</subject><ispartof>AIP conference proceedings, 2018, Vol.1967 (1)</ispartof><rights>Author(s)</rights><rights>2018 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-dc6e5b81ff9034c09bf266a5fcfafc89c831c63433c4dee564e67fef68c43d893</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/1.5038987$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,790,4497,23910,23911,25119,27903,27904,76130</link.rule.ids></links><search><contributor>Fang, Dajing</contributor><contributor>Zhu, Shanhong</contributor><contributor>Kuang, Tao</contributor><creatorcontrib>Huang, Weiqing</creatorcontrib><creatorcontrib>Hou, Erhang</creatorcontrib><creatorcontrib>Zheng, Liang</creatorcontrib><creatorcontrib>Feng, Weimiao</creatorcontrib><title>MixDroid: A multi-features and multi-classifiers bagging system for Android malware detection</title><title>AIP conference proceedings</title><description>In the past decade, Android platform has rapidly taken over the mobile market for its superior convenience and open source characteristics. However, with the popularity of Android, malwares targeting on Android devices are increasing rapidly, while the conventional rule-based and expert-experienced approaches are no longer able to handle such explosive growth. In this paper, combining with the theory of natural language processing and machine learning, we not only implement the basic feature extraction of permission application features, but also propose two innovative schemes of feature extraction: Dalvik opcode features and malicious code image, and implement an automatic Android malware detection system MixDroid which is based on multi-features and multi-classifiers. According to our experiment results on 20,000 Android applications, detection accuracy of MixDroid is 98.1%, which proves our schemes’ effectiveness in Android malware detection.</description><subject>Classifiers</subject><subject>Feature extraction</subject><subject>Image detection</subject><subject>Machine learning</subject><subject>Malware</subject><subject>Mobile operating systems</subject><subject>Natural language processing</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2018</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kEtLAzEcxIMoWKsHv0HAm7A12Tw2663UJ1S8KHiRkCb_lJR91CSr9tvbYsGbp4Hhx8wwCJ1TMqFEsis6EYSpWlUHaESFoEUlqTxEI0JqXpScvR2jk5RWhJR1VakRen8K3zexD-4aT3E7NDkUHkweIiRsOre3bGNSCj5ATHhhlsvQLXHapAwt9n3E087tInBrmi8TATvIYHPou1N05E2T4GyvY_R6d_syeyjmz_ePs-m8sKxUuXBWglgo6n1NGLekXvhSSiO89cZbVVvFqJWMM2a5AxCSg6w8eKksZ07VbIwufnPXsf8YIGW96ofYbSt1SZSSigjBt9TlL5VsyGa3T69jaE3caEr07j5N9f6-_-DPPv6Beu08-wFTk3ID</recordid><startdate>20180523</startdate><enddate>20180523</enddate><creator>Huang, Weiqing</creator><creator>Hou, Erhang</creator><creator>Zheng, Liang</creator><creator>Feng, Weimiao</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20180523</creationdate><title>MixDroid: A multi-features and multi-classifiers bagging system for Android malware detection</title><author>Huang, Weiqing ; Hou, Erhang ; Zheng, Liang ; Feng, Weimiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-dc6e5b81ff9034c09bf266a5fcfafc89c831c63433c4dee564e67fef68c43d893</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Classifiers</topic><topic>Feature extraction</topic><topic>Image detection</topic><topic>Machine learning</topic><topic>Malware</topic><topic>Mobile operating systems</topic><topic>Natural language processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Weiqing</creatorcontrib><creatorcontrib>Hou, Erhang</creatorcontrib><creatorcontrib>Zheng, Liang</creatorcontrib><creatorcontrib>Feng, Weimiao</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Weiqing</au><au>Hou, Erhang</au><au>Zheng, Liang</au><au>Feng, Weimiao</au><au>Fang, Dajing</au><au>Zhu, Shanhong</au><au>Kuang, Tao</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>MixDroid: A multi-features and multi-classifiers bagging system for Android malware detection</atitle><btitle>AIP conference proceedings</btitle><date>2018-05-23</date><risdate>2018</risdate><volume>1967</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>In the past decade, Android platform has rapidly taken over the mobile market for its superior convenience and open source characteristics. However, with the popularity of Android, malwares targeting on Android devices are increasing rapidly, while the conventional rule-based and expert-experienced approaches are no longer able to handle such explosive growth. In this paper, combining with the theory of natural language processing and machine learning, we not only implement the basic feature extraction of permission application features, but also propose two innovative schemes of feature extraction: Dalvik opcode features and malicious code image, and implement an automatic Android malware detection system MixDroid which is based on multi-features and multi-classifiers. According to our experiment results on 20,000 Android applications, detection accuracy of MixDroid is 98.1%, which proves our schemes’ effectiveness in Android malware detection.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5038987</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2018, Vol.1967 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_scitation_primary_10_1063_1_5038987
source AIP Journals Complete
subjects Classifiers
Feature extraction
Image detection
Machine learning
Malware
Mobile operating systems
Natural language processing
title MixDroid: A multi-features and multi-classifiers bagging system for Android malware detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T15%3A05%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=MixDroid:%20A%20multi-features%20and%20multi-classifiers%20bagging%20system%20for%20Android%20malware%20detection&rft.btitle=AIP%20conference%20proceedings&rft.au=Huang,%20Weiqing&rft.date=2018-05-23&rft.volume=1967&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/1.5038987&rft_dat=%3Cproquest_scita%3E2088680554%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2088680554&rft_id=info:pmid/&rfr_iscdi=true