Quantum key distribution using in-line highly birefringent interferometers

Secure communication networks enabled by commercial quantum key distribution (QKD) are already available. However, their widespread deployment will require great efforts towards reducing the currently prohibitive cost of QKD systems. Here, we propose a compact and cost-effective alternative to the a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2018-07, Vol.113 (3)
Hauptverfasser: Martinez, Amos, Fröhlich, Bernd, Dynes, James F., Sharpe, Andrew W., Tam, Winci, Plews, Alan, Lucamarini, Marco, Yuan, Zhiliang, Shields, Andrew J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title Applied physics letters
container_volume 113
creator Martinez, Amos
Fröhlich, Bernd
Dynes, James F.
Sharpe, Andrew W.
Tam, Winci
Plews, Alan
Lucamarini, Marco
Yuan, Zhiliang
Shields, Andrew J.
description Secure communication networks enabled by commercial quantum key distribution (QKD) are already available. However, their widespread deployment will require great efforts towards reducing the currently prohibitive cost of QKD systems. Here, we propose a compact and cost-effective alternative to the asymmetric Mach-Zehnder interferometer commonly used to implement phase encoding in the Bennett-Brassard 1984 (BB84) QKD protocol. Our solution consists of an all-fiber, in-line, highly birefringent interferometer (HBI). The HBI shows improved tolerance to length mismatches and a simpler assembly, making it particularly desirable for the fabrication of multi-user systems where several interferometers must have matched delays and where cost and space considerations can be most critical, such as quantum access networks. As a proof-of-principle, we demonstrate point-to-point QKD operation with HBIs over 15.5 km drop fiber and an 8-port passive optical network splitter. We achieve a secure key generation rate of 299.4 ± 16.4 kbit/s with a quantum bit error rate of 2.89 ± 0.31% for a continuous 25 h operation period.
doi_str_mv 10.1063/1.5036827
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_5036827</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2087556681</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-edc94f9ee325e6ed2eb489e022be31fc5826f5371b1085bca706df29e1476a323</originalsourceid><addsrcrecordid>eNqdkEtLQzEQhYMoWKsL_8EFVwq3ZpLmcZdSfFIQQdfhPiZtaptbk1yh_95IC-5dzQznY-bMIeQS6ASo5LcwEZRLzdQRGQFVquQA-piMKKW8lJWAU3IW4yqPgnE-Ii9vQ-3TsCk-cVd0LqbgmiG53hdDdH5ROF-uncdi6RbL9a5oXEAbsoA-ZS1hsBj6DeYmnpMTW68jXhzqmHw83L_Pnsr56-Pz7G5etpypVGLXVlNbIXImUGLHsJnqCiljDXKwrdBMWsEVNEC1aNpaUdlZViFMlaw542Nytd-7Df3XgDGZVT8En08aRrUSQkoNmbreU23oY8yuzTa4TR12Bqj5jcqAOUSV2Zs9G1uX6t_v_wd_9-EPNNvO8h-E-ngI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2087556681</pqid></control><display><type>article</type><title>Quantum key distribution using in-line highly birefringent interferometers</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Martinez, Amos ; Fröhlich, Bernd ; Dynes, James F. ; Sharpe, Andrew W. ; Tam, Winci ; Plews, Alan ; Lucamarini, Marco ; Yuan, Zhiliang ; Shields, Andrew J.</creator><creatorcontrib>Martinez, Amos ; Fröhlich, Bernd ; Dynes, James F. ; Sharpe, Andrew W. ; Tam, Winci ; Plews, Alan ; Lucamarini, Marco ; Yuan, Zhiliang ; Shields, Andrew J.</creatorcontrib><description>Secure communication networks enabled by commercial quantum key distribution (QKD) are already available. However, their widespread deployment will require great efforts towards reducing the currently prohibitive cost of QKD systems. Here, we propose a compact and cost-effective alternative to the asymmetric Mach-Zehnder interferometer commonly used to implement phase encoding in the Bennett-Brassard 1984 (BB84) QKD protocol. Our solution consists of an all-fiber, in-line, highly birefringent interferometer (HBI). The HBI shows improved tolerance to length mismatches and a simpler assembly, making it particularly desirable for the fabrication of multi-user systems where several interferometers must have matched delays and where cost and space considerations can be most critical, such as quantum access networks. As a proof-of-principle, we demonstrate point-to-point QKD operation with HBIs over 15.5 km drop fiber and an 8-port passive optical network splitter. We achieve a secure key generation rate of 299.4 ± 16.4 kbit/s with a quantum bit error rate of 2.89 ± 0.31% for a continuous 25 h operation period.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.5036827</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Bit error rate ; Communication networks ; Interferometers ; Mach-Zehnder interferometers ; Optical communication ; Quantum cryptography ; Qubits (quantum computing) ; System effectiveness</subject><ispartof>Applied physics letters, 2018-07, Vol.113 (3)</ispartof><rights>Author(s)</rights><rights>2018 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-edc94f9ee325e6ed2eb489e022be31fc5826f5371b1085bca706df29e1476a323</citedby><cites>FETCH-LOGICAL-c327t-edc94f9ee325e6ed2eb489e022be31fc5826f5371b1085bca706df29e1476a323</cites><orcidid>0000-0001-5276-9151 ; 0000-0002-7589-0795 ; 0000-0002-7351-4622 ; 0000-0003-0710-2336</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/1.5036827$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids></links><search><creatorcontrib>Martinez, Amos</creatorcontrib><creatorcontrib>Fröhlich, Bernd</creatorcontrib><creatorcontrib>Dynes, James F.</creatorcontrib><creatorcontrib>Sharpe, Andrew W.</creatorcontrib><creatorcontrib>Tam, Winci</creatorcontrib><creatorcontrib>Plews, Alan</creatorcontrib><creatorcontrib>Lucamarini, Marco</creatorcontrib><creatorcontrib>Yuan, Zhiliang</creatorcontrib><creatorcontrib>Shields, Andrew J.</creatorcontrib><title>Quantum key distribution using in-line highly birefringent interferometers</title><title>Applied physics letters</title><description>Secure communication networks enabled by commercial quantum key distribution (QKD) are already available. However, their widespread deployment will require great efforts towards reducing the currently prohibitive cost of QKD systems. Here, we propose a compact and cost-effective alternative to the asymmetric Mach-Zehnder interferometer commonly used to implement phase encoding in the Bennett-Brassard 1984 (BB84) QKD protocol. Our solution consists of an all-fiber, in-line, highly birefringent interferometer (HBI). The HBI shows improved tolerance to length mismatches and a simpler assembly, making it particularly desirable for the fabrication of multi-user systems where several interferometers must have matched delays and where cost and space considerations can be most critical, such as quantum access networks. As a proof-of-principle, we demonstrate point-to-point QKD operation with HBIs over 15.5 km drop fiber and an 8-port passive optical network splitter. We achieve a secure key generation rate of 299.4 ± 16.4 kbit/s with a quantum bit error rate of 2.89 ± 0.31% for a continuous 25 h operation period.</description><subject>Applied physics</subject><subject>Bit error rate</subject><subject>Communication networks</subject><subject>Interferometers</subject><subject>Mach-Zehnder interferometers</subject><subject>Optical communication</subject><subject>Quantum cryptography</subject><subject>Qubits (quantum computing)</subject><subject>System effectiveness</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqdkEtLQzEQhYMoWKsL_8EFVwq3ZpLmcZdSfFIQQdfhPiZtaptbk1yh_95IC-5dzQznY-bMIeQS6ASo5LcwEZRLzdQRGQFVquQA-piMKKW8lJWAU3IW4yqPgnE-Ii9vQ-3TsCk-cVd0LqbgmiG53hdDdH5ROF-uncdi6RbL9a5oXEAbsoA-ZS1hsBj6DeYmnpMTW68jXhzqmHw83L_Pnsr56-Pz7G5etpypVGLXVlNbIXImUGLHsJnqCiljDXKwrdBMWsEVNEC1aNpaUdlZViFMlaw542Nytd-7Df3XgDGZVT8En08aRrUSQkoNmbreU23oY8yuzTa4TR12Bqj5jcqAOUSV2Zs9G1uX6t_v_wd_9-EPNNvO8h-E-ngI</recordid><startdate>20180716</startdate><enddate>20180716</enddate><creator>Martinez, Amos</creator><creator>Fröhlich, Bernd</creator><creator>Dynes, James F.</creator><creator>Sharpe, Andrew W.</creator><creator>Tam, Winci</creator><creator>Plews, Alan</creator><creator>Lucamarini, Marco</creator><creator>Yuan, Zhiliang</creator><creator>Shields, Andrew J.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5276-9151</orcidid><orcidid>https://orcid.org/0000-0002-7589-0795</orcidid><orcidid>https://orcid.org/0000-0002-7351-4622</orcidid><orcidid>https://orcid.org/0000-0003-0710-2336</orcidid></search><sort><creationdate>20180716</creationdate><title>Quantum key distribution using in-line highly birefringent interferometers</title><author>Martinez, Amos ; Fröhlich, Bernd ; Dynes, James F. ; Sharpe, Andrew W. ; Tam, Winci ; Plews, Alan ; Lucamarini, Marco ; Yuan, Zhiliang ; Shields, Andrew J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-edc94f9ee325e6ed2eb489e022be31fc5826f5371b1085bca706df29e1476a323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Applied physics</topic><topic>Bit error rate</topic><topic>Communication networks</topic><topic>Interferometers</topic><topic>Mach-Zehnder interferometers</topic><topic>Optical communication</topic><topic>Quantum cryptography</topic><topic>Qubits (quantum computing)</topic><topic>System effectiveness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martinez, Amos</creatorcontrib><creatorcontrib>Fröhlich, Bernd</creatorcontrib><creatorcontrib>Dynes, James F.</creatorcontrib><creatorcontrib>Sharpe, Andrew W.</creatorcontrib><creatorcontrib>Tam, Winci</creatorcontrib><creatorcontrib>Plews, Alan</creatorcontrib><creatorcontrib>Lucamarini, Marco</creatorcontrib><creatorcontrib>Yuan, Zhiliang</creatorcontrib><creatorcontrib>Shields, Andrew J.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martinez, Amos</au><au>Fröhlich, Bernd</au><au>Dynes, James F.</au><au>Sharpe, Andrew W.</au><au>Tam, Winci</au><au>Plews, Alan</au><au>Lucamarini, Marco</au><au>Yuan, Zhiliang</au><au>Shields, Andrew J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum key distribution using in-line highly birefringent interferometers</atitle><jtitle>Applied physics letters</jtitle><date>2018-07-16</date><risdate>2018</risdate><volume>113</volume><issue>3</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Secure communication networks enabled by commercial quantum key distribution (QKD) are already available. However, their widespread deployment will require great efforts towards reducing the currently prohibitive cost of QKD systems. Here, we propose a compact and cost-effective alternative to the asymmetric Mach-Zehnder interferometer commonly used to implement phase encoding in the Bennett-Brassard 1984 (BB84) QKD protocol. Our solution consists of an all-fiber, in-line, highly birefringent interferometer (HBI). The HBI shows improved tolerance to length mismatches and a simpler assembly, making it particularly desirable for the fabrication of multi-user systems where several interferometers must have matched delays and where cost and space considerations can be most critical, such as quantum access networks. As a proof-of-principle, we demonstrate point-to-point QKD operation with HBIs over 15.5 km drop fiber and an 8-port passive optical network splitter. We achieve a secure key generation rate of 299.4 ± 16.4 kbit/s with a quantum bit error rate of 2.89 ± 0.31% for a continuous 25 h operation period.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5036827</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-5276-9151</orcidid><orcidid>https://orcid.org/0000-0002-7589-0795</orcidid><orcidid>https://orcid.org/0000-0002-7351-4622</orcidid><orcidid>https://orcid.org/0000-0003-0710-2336</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2018-07, Vol.113 (3)
issn 0003-6951
1077-3118
language eng
recordid cdi_scitation_primary_10_1063_1_5036827
source AIP Journals Complete; Alma/SFX Local Collection
subjects Applied physics
Bit error rate
Communication networks
Interferometers
Mach-Zehnder interferometers
Optical communication
Quantum cryptography
Qubits (quantum computing)
System effectiveness
title Quantum key distribution using in-line highly birefringent interferometers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T21%3A26%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20key%20distribution%20using%20in-line%20highly%20birefringent%20interferometers&rft.jtitle=Applied%20physics%20letters&rft.au=Martinez,%20Amos&rft.date=2018-07-16&rft.volume=113&rft.issue=3&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/1.5036827&rft_dat=%3Cproquest_scita%3E2087556681%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2087556681&rft_id=info:pmid/&rfr_iscdi=true