Quantum key distribution using in-line highly birefringent interferometers
Secure communication networks enabled by commercial quantum key distribution (QKD) are already available. However, their widespread deployment will require great efforts towards reducing the currently prohibitive cost of QKD systems. Here, we propose a compact and cost-effective alternative to the a...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2018-07, Vol.113 (3) |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | |
container_title | Applied physics letters |
container_volume | 113 |
creator | Martinez, Amos Fröhlich, Bernd Dynes, James F. Sharpe, Andrew W. Tam, Winci Plews, Alan Lucamarini, Marco Yuan, Zhiliang Shields, Andrew J. |
description | Secure communication networks enabled by commercial quantum key distribution (QKD) are already available. However, their widespread deployment will require great efforts towards reducing the currently prohibitive cost of QKD systems. Here, we propose a compact and cost-effective alternative to the asymmetric Mach-Zehnder interferometer commonly used to implement phase encoding in the Bennett-Brassard 1984 (BB84) QKD protocol. Our solution consists of an all-fiber, in-line, highly birefringent interferometer (HBI). The HBI shows improved tolerance to length mismatches and a simpler assembly, making it particularly desirable for the fabrication of multi-user systems where several interferometers must have matched delays and where cost and space considerations can be most critical, such as quantum access networks. As a proof-of-principle, we demonstrate point-to-point QKD operation with HBIs over 15.5 km drop fiber and an 8-port passive optical network splitter. We achieve a secure key generation rate of 299.4 ± 16.4 kbit/s with a quantum bit error rate of 2.89 ± 0.31% for a continuous 25 h operation period. |
doi_str_mv | 10.1063/1.5036827 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_5036827</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2087556681</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-edc94f9ee325e6ed2eb489e022be31fc5826f5371b1085bca706df29e1476a323</originalsourceid><addsrcrecordid>eNqdkEtLQzEQhYMoWKsL_8EFVwq3ZpLmcZdSfFIQQdfhPiZtaptbk1yh_95IC-5dzQznY-bMIeQS6ASo5LcwEZRLzdQRGQFVquQA-piMKKW8lJWAU3IW4yqPgnE-Ii9vQ-3TsCk-cVd0LqbgmiG53hdDdH5ROF-uncdi6RbL9a5oXEAbsoA-ZS1hsBj6DeYmnpMTW68jXhzqmHw83L_Pnsr56-Pz7G5etpypVGLXVlNbIXImUGLHsJnqCiljDXKwrdBMWsEVNEC1aNpaUdlZViFMlaw542Nytd-7Df3XgDGZVT8En08aRrUSQkoNmbreU23oY8yuzTa4TR12Bqj5jcqAOUSV2Zs9G1uX6t_v_wd_9-EPNNvO8h-E-ngI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2087556681</pqid></control><display><type>article</type><title>Quantum key distribution using in-line highly birefringent interferometers</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Martinez, Amos ; Fröhlich, Bernd ; Dynes, James F. ; Sharpe, Andrew W. ; Tam, Winci ; Plews, Alan ; Lucamarini, Marco ; Yuan, Zhiliang ; Shields, Andrew J.</creator><creatorcontrib>Martinez, Amos ; Fröhlich, Bernd ; Dynes, James F. ; Sharpe, Andrew W. ; Tam, Winci ; Plews, Alan ; Lucamarini, Marco ; Yuan, Zhiliang ; Shields, Andrew J.</creatorcontrib><description>Secure communication networks enabled by commercial quantum key distribution (QKD) are already available. However, their widespread deployment will require great efforts towards reducing the currently prohibitive cost of QKD systems. Here, we propose a compact and cost-effective alternative to the asymmetric Mach-Zehnder interferometer commonly used to implement phase encoding in the Bennett-Brassard 1984 (BB84) QKD protocol. Our solution consists of an all-fiber, in-line, highly birefringent interferometer (HBI). The HBI shows improved tolerance to length mismatches and a simpler assembly, making it particularly desirable for the fabrication of multi-user systems where several interferometers must have matched delays and where cost and space considerations can be most critical, such as quantum access networks. As a proof-of-principle, we demonstrate point-to-point QKD operation with HBIs over 15.5 km drop fiber and an 8-port passive optical network splitter. We achieve a secure key generation rate of 299.4 ± 16.4 kbit/s with a quantum bit error rate of 2.89 ± 0.31% for a continuous 25 h operation period.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.5036827</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Bit error rate ; Communication networks ; Interferometers ; Mach-Zehnder interferometers ; Optical communication ; Quantum cryptography ; Qubits (quantum computing) ; System effectiveness</subject><ispartof>Applied physics letters, 2018-07, Vol.113 (3)</ispartof><rights>Author(s)</rights><rights>2018 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-edc94f9ee325e6ed2eb489e022be31fc5826f5371b1085bca706df29e1476a323</citedby><cites>FETCH-LOGICAL-c327t-edc94f9ee325e6ed2eb489e022be31fc5826f5371b1085bca706df29e1476a323</cites><orcidid>0000-0001-5276-9151 ; 0000-0002-7589-0795 ; 0000-0002-7351-4622 ; 0000-0003-0710-2336</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/1.5036827$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids></links><search><creatorcontrib>Martinez, Amos</creatorcontrib><creatorcontrib>Fröhlich, Bernd</creatorcontrib><creatorcontrib>Dynes, James F.</creatorcontrib><creatorcontrib>Sharpe, Andrew W.</creatorcontrib><creatorcontrib>Tam, Winci</creatorcontrib><creatorcontrib>Plews, Alan</creatorcontrib><creatorcontrib>Lucamarini, Marco</creatorcontrib><creatorcontrib>Yuan, Zhiliang</creatorcontrib><creatorcontrib>Shields, Andrew J.</creatorcontrib><title>Quantum key distribution using in-line highly birefringent interferometers</title><title>Applied physics letters</title><description>Secure communication networks enabled by commercial quantum key distribution (QKD) are already available. However, their widespread deployment will require great efforts towards reducing the currently prohibitive cost of QKD systems. Here, we propose a compact and cost-effective alternative to the asymmetric Mach-Zehnder interferometer commonly used to implement phase encoding in the Bennett-Brassard 1984 (BB84) QKD protocol. Our solution consists of an all-fiber, in-line, highly birefringent interferometer (HBI). The HBI shows improved tolerance to length mismatches and a simpler assembly, making it particularly desirable for the fabrication of multi-user systems where several interferometers must have matched delays and where cost and space considerations can be most critical, such as quantum access networks. As a proof-of-principle, we demonstrate point-to-point QKD operation with HBIs over 15.5 km drop fiber and an 8-port passive optical network splitter. We achieve a secure key generation rate of 299.4 ± 16.4 kbit/s with a quantum bit error rate of 2.89 ± 0.31% for a continuous 25 h operation period.</description><subject>Applied physics</subject><subject>Bit error rate</subject><subject>Communication networks</subject><subject>Interferometers</subject><subject>Mach-Zehnder interferometers</subject><subject>Optical communication</subject><subject>Quantum cryptography</subject><subject>Qubits (quantum computing)</subject><subject>System effectiveness</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqdkEtLQzEQhYMoWKsL_8EFVwq3ZpLmcZdSfFIQQdfhPiZtaptbk1yh_95IC-5dzQznY-bMIeQS6ASo5LcwEZRLzdQRGQFVquQA-piMKKW8lJWAU3IW4yqPgnE-Ii9vQ-3TsCk-cVd0LqbgmiG53hdDdH5ROF-uncdi6RbL9a5oXEAbsoA-ZS1hsBj6DeYmnpMTW68jXhzqmHw83L_Pnsr56-Pz7G5etpypVGLXVlNbIXImUGLHsJnqCiljDXKwrdBMWsEVNEC1aNpaUdlZViFMlaw542Nytd-7Df3XgDGZVT8En08aRrUSQkoNmbreU23oY8yuzTa4TR12Bqj5jcqAOUSV2Zs9G1uX6t_v_wd_9-EPNNvO8h-E-ngI</recordid><startdate>20180716</startdate><enddate>20180716</enddate><creator>Martinez, Amos</creator><creator>Fröhlich, Bernd</creator><creator>Dynes, James F.</creator><creator>Sharpe, Andrew W.</creator><creator>Tam, Winci</creator><creator>Plews, Alan</creator><creator>Lucamarini, Marco</creator><creator>Yuan, Zhiliang</creator><creator>Shields, Andrew J.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5276-9151</orcidid><orcidid>https://orcid.org/0000-0002-7589-0795</orcidid><orcidid>https://orcid.org/0000-0002-7351-4622</orcidid><orcidid>https://orcid.org/0000-0003-0710-2336</orcidid></search><sort><creationdate>20180716</creationdate><title>Quantum key distribution using in-line highly birefringent interferometers</title><author>Martinez, Amos ; Fröhlich, Bernd ; Dynes, James F. ; Sharpe, Andrew W. ; Tam, Winci ; Plews, Alan ; Lucamarini, Marco ; Yuan, Zhiliang ; Shields, Andrew J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-edc94f9ee325e6ed2eb489e022be31fc5826f5371b1085bca706df29e1476a323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Applied physics</topic><topic>Bit error rate</topic><topic>Communication networks</topic><topic>Interferometers</topic><topic>Mach-Zehnder interferometers</topic><topic>Optical communication</topic><topic>Quantum cryptography</topic><topic>Qubits (quantum computing)</topic><topic>System effectiveness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martinez, Amos</creatorcontrib><creatorcontrib>Fröhlich, Bernd</creatorcontrib><creatorcontrib>Dynes, James F.</creatorcontrib><creatorcontrib>Sharpe, Andrew W.</creatorcontrib><creatorcontrib>Tam, Winci</creatorcontrib><creatorcontrib>Plews, Alan</creatorcontrib><creatorcontrib>Lucamarini, Marco</creatorcontrib><creatorcontrib>Yuan, Zhiliang</creatorcontrib><creatorcontrib>Shields, Andrew J.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martinez, Amos</au><au>Fröhlich, Bernd</au><au>Dynes, James F.</au><au>Sharpe, Andrew W.</au><au>Tam, Winci</au><au>Plews, Alan</au><au>Lucamarini, Marco</au><au>Yuan, Zhiliang</au><au>Shields, Andrew J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum key distribution using in-line highly birefringent interferometers</atitle><jtitle>Applied physics letters</jtitle><date>2018-07-16</date><risdate>2018</risdate><volume>113</volume><issue>3</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Secure communication networks enabled by commercial quantum key distribution (QKD) are already available. However, their widespread deployment will require great efforts towards reducing the currently prohibitive cost of QKD systems. Here, we propose a compact and cost-effective alternative to the asymmetric Mach-Zehnder interferometer commonly used to implement phase encoding in the Bennett-Brassard 1984 (BB84) QKD protocol. Our solution consists of an all-fiber, in-line, highly birefringent interferometer (HBI). The HBI shows improved tolerance to length mismatches and a simpler assembly, making it particularly desirable for the fabrication of multi-user systems where several interferometers must have matched delays and where cost and space considerations can be most critical, such as quantum access networks. As a proof-of-principle, we demonstrate point-to-point QKD operation with HBIs over 15.5 km drop fiber and an 8-port passive optical network splitter. We achieve a secure key generation rate of 299.4 ± 16.4 kbit/s with a quantum bit error rate of 2.89 ± 0.31% for a continuous 25 h operation period.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5036827</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-5276-9151</orcidid><orcidid>https://orcid.org/0000-0002-7589-0795</orcidid><orcidid>https://orcid.org/0000-0002-7351-4622</orcidid><orcidid>https://orcid.org/0000-0003-0710-2336</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2018-07, Vol.113 (3) |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_scitation_primary_10_1063_1_5036827 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Applied physics Bit error rate Communication networks Interferometers Mach-Zehnder interferometers Optical communication Quantum cryptography Qubits (quantum computing) System effectiveness |
title | Quantum key distribution using in-line highly birefringent interferometers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T21%3A26%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20key%20distribution%20using%20in-line%20highly%20birefringent%20interferometers&rft.jtitle=Applied%20physics%20letters&rft.au=Martinez,%20Amos&rft.date=2018-07-16&rft.volume=113&rft.issue=3&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/1.5036827&rft_dat=%3Cproquest_scita%3E2087556681%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2087556681&rft_id=info:pmid/&rfr_iscdi=true |