Simulation of creep effects in framework of a geometrically nonlinear endochronic theory of inelasticity
A geometric non-linear endochronic theory of inelasticity in tensor parametric form is considered. In the framework of this theory, the creep strains are modelled. The effect of various schemes of applying stresses and changing of material properties on the development of creep strains is studied. T...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 1959 |
creator | Zabavnikova, T. A. Kadashevich, Yu. I. Pomytkin, S. P. |
description | A geometric non-linear endochronic theory of inelasticity in tensor parametric form is considered. In the framework of this theory, the creep strains are modelled. The effect of various schemes of applying stresses and changing of material properties on the development of creep strains is studied. The constitutive equations of the model are represented by non-linear systems of ordinary differential equations which are solved in MATLAB environment by implicit difference method. Presented results demonstrate a good qualitative agreement of theoretical data and experimental observations including the description of the tertiary creep and pre-fracture of materials. |
doi_str_mv | 10.1063/1.5034714 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>scitation</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_5034714</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>acp</sourcerecordid><originalsourceid>FETCH-LOGICAL-s190t-38c6a4bcfd9c6d6be2f6b75c94a4fff90eb9b7d8b2e87e9a939e43a34234ae733</originalsourceid><addsrcrecordid>eNotkE1LxDAYhIMouK4e_Ac5C9WkSZPmKItfsOBBBW_lbfrGjbbJkkSk_95d3dMcnmGGGUIuObvmTIkbft0wITWXR2TBm4ZXWnF1TBaMGVnVUryfkrOcPxmrjdbtgmxe_PQ9QvEx0OioTYhbis6hLZn6QF2CCX9i-tpToB8YJyzJWxjHmYYYRh8QEsUwRLtJMXhLywZjmvf-HRshF299mc_JiYMx48VBl-Tt_u519Vitnx-eVrfrKnPDSiVaq0D21g3GqkH1WDvV68YaCdI5Zxj2ptdD29fYajRghEEpQMhaSEAtxJJc_efmXevfrm6b_ARp7jjr9h91vDt8JH4BvINcXA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Simulation of creep effects in framework of a geometrically nonlinear endochronic theory of inelasticity</title><source>AIP Journals Complete</source><creator>Zabavnikova, T. A. ; Kadashevich, Yu. I. ; Pomytkin, S. P.</creator><contributor>Leonov, Gennady ; Morosov, Nikita ; Yushkov, Mikhail ; Mekhonoshina, Mariia ; Kustova, Elena</contributor><creatorcontrib>Zabavnikova, T. A. ; Kadashevich, Yu. I. ; Pomytkin, S. P. ; Leonov, Gennady ; Morosov, Nikita ; Yushkov, Mikhail ; Mekhonoshina, Mariia ; Kustova, Elena</creatorcontrib><description>A geometric non-linear endochronic theory of inelasticity in tensor parametric form is considered. In the framework of this theory, the creep strains are modelled. The effect of various schemes of applying stresses and changing of material properties on the development of creep strains is studied. The constitutive equations of the model are represented by non-linear systems of ordinary differential equations which are solved in MATLAB environment by implicit difference method. Presented results demonstrate a good qualitative agreement of theoretical data and experimental observations including the description of the tertiary creep and pre-fracture of materials.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.5034714</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><ispartof>AIP conference proceedings, 2018, Vol.1959 (1)</ispartof><rights>Author(s)</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/1.5034714$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids></links><search><contributor>Leonov, Gennady</contributor><contributor>Morosov, Nikita</contributor><contributor>Yushkov, Mikhail</contributor><contributor>Mekhonoshina, Mariia</contributor><contributor>Kustova, Elena</contributor><creatorcontrib>Zabavnikova, T. A.</creatorcontrib><creatorcontrib>Kadashevich, Yu. I.</creatorcontrib><creatorcontrib>Pomytkin, S. P.</creatorcontrib><title>Simulation of creep effects in framework of a geometrically nonlinear endochronic theory of inelasticity</title><title>AIP conference proceedings</title><description>A geometric non-linear endochronic theory of inelasticity in tensor parametric form is considered. In the framework of this theory, the creep strains are modelled. The effect of various schemes of applying stresses and changing of material properties on the development of creep strains is studied. The constitutive equations of the model are represented by non-linear systems of ordinary differential equations which are solved in MATLAB environment by implicit difference method. Presented results demonstrate a good qualitative agreement of theoretical data and experimental observations including the description of the tertiary creep and pre-fracture of materials.</description><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2018</creationdate><recordtype>conference_proceeding</recordtype><sourceid/><recordid>eNotkE1LxDAYhIMouK4e_Ac5C9WkSZPmKItfsOBBBW_lbfrGjbbJkkSk_95d3dMcnmGGGUIuObvmTIkbft0wITWXR2TBm4ZXWnF1TBaMGVnVUryfkrOcPxmrjdbtgmxe_PQ9QvEx0OioTYhbis6hLZn6QF2CCX9i-tpToB8YJyzJWxjHmYYYRh8QEsUwRLtJMXhLywZjmvf-HRshF299mc_JiYMx48VBl-Tt_u519Vitnx-eVrfrKnPDSiVaq0D21g3GqkH1WDvV68YaCdI5Zxj2ptdD29fYajRghEEpQMhaSEAtxJJc_efmXevfrm6b_ARp7jjr9h91vDt8JH4BvINcXA</recordid><startdate>20180502</startdate><enddate>20180502</enddate><creator>Zabavnikova, T. A.</creator><creator>Kadashevich, Yu. I.</creator><creator>Pomytkin, S. P.</creator><scope/></search><sort><creationdate>20180502</creationdate><title>Simulation of creep effects in framework of a geometrically nonlinear endochronic theory of inelasticity</title><author>Zabavnikova, T. A. ; Kadashevich, Yu. I. ; Pomytkin, S. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-s190t-38c6a4bcfd9c6d6be2f6b75c94a4fff90eb9b7d8b2e87e9a939e43a34234ae733</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zabavnikova, T. A.</creatorcontrib><creatorcontrib>Kadashevich, Yu. I.</creatorcontrib><creatorcontrib>Pomytkin, S. P.</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zabavnikova, T. A.</au><au>Kadashevich, Yu. I.</au><au>Pomytkin, S. P.</au><au>Leonov, Gennady</au><au>Morosov, Nikita</au><au>Yushkov, Mikhail</au><au>Mekhonoshina, Mariia</au><au>Kustova, Elena</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Simulation of creep effects in framework of a geometrically nonlinear endochronic theory of inelasticity</atitle><btitle>AIP conference proceedings</btitle><date>2018-05-02</date><risdate>2018</risdate><volume>1959</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>A geometric non-linear endochronic theory of inelasticity in tensor parametric form is considered. In the framework of this theory, the creep strains are modelled. The effect of various schemes of applying stresses and changing of material properties on the development of creep strains is studied. The constitutive equations of the model are represented by non-linear systems of ordinary differential equations which are solved in MATLAB environment by implicit difference method. Presented results demonstrate a good qualitative agreement of theoretical data and experimental observations including the description of the tertiary creep and pre-fracture of materials.</abstract><doi>10.1063/1.5034714</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2018, Vol.1959 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_scitation_primary_10_1063_1_5034714 |
source | AIP Journals Complete |
title | Simulation of creep effects in framework of a geometrically nonlinear endochronic theory of inelasticity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T03%3A57%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Simulation%20of%20creep%20effects%20in%20framework%20of%20a%20geometrically%20nonlinear%20endochronic%20theory%20of%20inelasticity&rft.btitle=AIP%20conference%20proceedings&rft.au=Zabavnikova,%20T.%20A.&rft.date=2018-05-02&rft.volume=1959&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/1.5034714&rft_dat=%3Cscitation%3Eacp%3C/scitation%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |