Simulation of creep effects in framework of a geometrically nonlinear endochronic theory of inelasticity

A geometric non-linear endochronic theory of inelasticity in tensor parametric form is considered. In the framework of this theory, the creep strains are modelled. The effect of various schemes of applying stresses and changing of material properties on the development of creep strains is studied. T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Zabavnikova, T. A., Kadashevich, Yu. I., Pomytkin, S. P.
Format: Tagungsbericht
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 1959
creator Zabavnikova, T. A.
Kadashevich, Yu. I.
Pomytkin, S. P.
description A geometric non-linear endochronic theory of inelasticity in tensor parametric form is considered. In the framework of this theory, the creep strains are modelled. The effect of various schemes of applying stresses and changing of material properties on the development of creep strains is studied. The constitutive equations of the model are represented by non-linear systems of ordinary differential equations which are solved in MATLAB environment by implicit difference method. Presented results demonstrate a good qualitative agreement of theoretical data and experimental observations including the description of the tertiary creep and pre-fracture of materials.
doi_str_mv 10.1063/1.5034714
format Conference Proceeding
fullrecord <record><control><sourceid>scitation</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_5034714</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>acp</sourcerecordid><originalsourceid>FETCH-LOGICAL-s190t-38c6a4bcfd9c6d6be2f6b75c94a4fff90eb9b7d8b2e87e9a939e43a34234ae733</originalsourceid><addsrcrecordid>eNotkE1LxDAYhIMouK4e_Ac5C9WkSZPmKItfsOBBBW_lbfrGjbbJkkSk_95d3dMcnmGGGUIuObvmTIkbft0wITWXR2TBm4ZXWnF1TBaMGVnVUryfkrOcPxmrjdbtgmxe_PQ9QvEx0OioTYhbis6hLZn6QF2CCX9i-tpToB8YJyzJWxjHmYYYRh8QEsUwRLtJMXhLywZjmvf-HRshF299mc_JiYMx48VBl-Tt_u519Vitnx-eVrfrKnPDSiVaq0D21g3GqkH1WDvV68YaCdI5Zxj2ptdD29fYajRghEEpQMhaSEAtxJJc_efmXevfrm6b_ARp7jjr9h91vDt8JH4BvINcXA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Simulation of creep effects in framework of a geometrically nonlinear endochronic theory of inelasticity</title><source>AIP Journals Complete</source><creator>Zabavnikova, T. A. ; Kadashevich, Yu. I. ; Pomytkin, S. P.</creator><contributor>Leonov, Gennady ; Morosov, Nikita ; Yushkov, Mikhail ; Mekhonoshina, Mariia ; Kustova, Elena</contributor><creatorcontrib>Zabavnikova, T. A. ; Kadashevich, Yu. I. ; Pomytkin, S. P. ; Leonov, Gennady ; Morosov, Nikita ; Yushkov, Mikhail ; Mekhonoshina, Mariia ; Kustova, Elena</creatorcontrib><description>A geometric non-linear endochronic theory of inelasticity in tensor parametric form is considered. In the framework of this theory, the creep strains are modelled. The effect of various schemes of applying stresses and changing of material properties on the development of creep strains is studied. The constitutive equations of the model are represented by non-linear systems of ordinary differential equations which are solved in MATLAB environment by implicit difference method. Presented results demonstrate a good qualitative agreement of theoretical data and experimental observations including the description of the tertiary creep and pre-fracture of materials.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.5034714</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><ispartof>AIP conference proceedings, 2018, Vol.1959 (1)</ispartof><rights>Author(s)</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/1.5034714$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids></links><search><contributor>Leonov, Gennady</contributor><contributor>Morosov, Nikita</contributor><contributor>Yushkov, Mikhail</contributor><contributor>Mekhonoshina, Mariia</contributor><contributor>Kustova, Elena</contributor><creatorcontrib>Zabavnikova, T. A.</creatorcontrib><creatorcontrib>Kadashevich, Yu. I.</creatorcontrib><creatorcontrib>Pomytkin, S. P.</creatorcontrib><title>Simulation of creep effects in framework of a geometrically nonlinear endochronic theory of inelasticity</title><title>AIP conference proceedings</title><description>A geometric non-linear endochronic theory of inelasticity in tensor parametric form is considered. In the framework of this theory, the creep strains are modelled. The effect of various schemes of applying stresses and changing of material properties on the development of creep strains is studied. The constitutive equations of the model are represented by non-linear systems of ordinary differential equations which are solved in MATLAB environment by implicit difference method. Presented results demonstrate a good qualitative agreement of theoretical data and experimental observations including the description of the tertiary creep and pre-fracture of materials.</description><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2018</creationdate><recordtype>conference_proceeding</recordtype><sourceid/><recordid>eNotkE1LxDAYhIMouK4e_Ac5C9WkSZPmKItfsOBBBW_lbfrGjbbJkkSk_95d3dMcnmGGGUIuObvmTIkbft0wITWXR2TBm4ZXWnF1TBaMGVnVUryfkrOcPxmrjdbtgmxe_PQ9QvEx0OioTYhbis6hLZn6QF2CCX9i-tpToB8YJyzJWxjHmYYYRh8QEsUwRLtJMXhLywZjmvf-HRshF299mc_JiYMx48VBl-Tt_u519Vitnx-eVrfrKnPDSiVaq0D21g3GqkH1WDvV68YaCdI5Zxj2ptdD29fYajRghEEpQMhaSEAtxJJc_efmXevfrm6b_ARp7jjr9h91vDt8JH4BvINcXA</recordid><startdate>20180502</startdate><enddate>20180502</enddate><creator>Zabavnikova, T. A.</creator><creator>Kadashevich, Yu. I.</creator><creator>Pomytkin, S. P.</creator><scope/></search><sort><creationdate>20180502</creationdate><title>Simulation of creep effects in framework of a geometrically nonlinear endochronic theory of inelasticity</title><author>Zabavnikova, T. A. ; Kadashevich, Yu. I. ; Pomytkin, S. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-s190t-38c6a4bcfd9c6d6be2f6b75c94a4fff90eb9b7d8b2e87e9a939e43a34234ae733</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zabavnikova, T. A.</creatorcontrib><creatorcontrib>Kadashevich, Yu. I.</creatorcontrib><creatorcontrib>Pomytkin, S. P.</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zabavnikova, T. A.</au><au>Kadashevich, Yu. I.</au><au>Pomytkin, S. P.</au><au>Leonov, Gennady</au><au>Morosov, Nikita</au><au>Yushkov, Mikhail</au><au>Mekhonoshina, Mariia</au><au>Kustova, Elena</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Simulation of creep effects in framework of a geometrically nonlinear endochronic theory of inelasticity</atitle><btitle>AIP conference proceedings</btitle><date>2018-05-02</date><risdate>2018</risdate><volume>1959</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>A geometric non-linear endochronic theory of inelasticity in tensor parametric form is considered. In the framework of this theory, the creep strains are modelled. The effect of various schemes of applying stresses and changing of material properties on the development of creep strains is studied. The constitutive equations of the model are represented by non-linear systems of ordinary differential equations which are solved in MATLAB environment by implicit difference method. Presented results demonstrate a good qualitative agreement of theoretical data and experimental observations including the description of the tertiary creep and pre-fracture of materials.</abstract><doi>10.1063/1.5034714</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2018, Vol.1959 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_scitation_primary_10_1063_1_5034714
source AIP Journals Complete
title Simulation of creep effects in framework of a geometrically nonlinear endochronic theory of inelasticity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T03%3A57%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Simulation%20of%20creep%20effects%20in%20framework%20of%20a%20geometrically%20nonlinear%20endochronic%20theory%20of%20inelasticity&rft.btitle=AIP%20conference%20proceedings&rft.au=Zabavnikova,%20T.%20A.&rft.date=2018-05-02&rft.volume=1959&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/1.5034714&rft_dat=%3Cscitation%3Eacp%3C/scitation%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true