Electronic properties of GaSe/MoS2 and GaS/MoSe2 heterojunctions from first principles calculations

In this work, we theoretically investigate electronic properties of GaSeMoS2 and GaSMoSe2 heterojunctions using density functional theory based on first-principles calculations. The results show that both GaSeMoS2 and GaSMoSe2 heterojunctions are characterized by the weak vdW interactions with a cor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIP advances 2018-07, Vol.8 (7), p.075207-075207-9
Hauptverfasser: Pham, Khang D., Phuc, Huynh V., Hieu, Nguyen N., Hoi, Bui D., Nguyen, Chuong V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work, we theoretically investigate electronic properties of GaSeMoS2 and GaSMoSe2 heterojunctions using density functional theory based on first-principles calculations. The results show that both GaSeMoS2 and GaSMoSe2 heterojunctions are characterized by the weak vdW interactions with a corresponding interlayer distance of 3.45 Å and 3.54 Å, and the binding energy of −0.16 eV per GaSeGaS cell. Furthermore, one can observe that both the GaSeMoS2, and GaSMoSe2 heterojunctions are found to be indirect band gap semiconductors with a corresponding band gap of 1.91 eV and 1.23 eV, respectively. We also find that the band gaps of these semiconductors belong to type II band alignment. A type–II band alignment in both GaSeMoS2 and GaSMoSe2 heterojunctions open their potential applications as novel materials such as in designing and fabricating new generation of photovoltaic and optoelectronic devices.
ISSN:2158-3226
2158-3226
DOI:10.1063/1.5033348