Synthesis and study of structural, microstructural and dielectric properties of Ce3+ doped Co-Ni ferrites for automotive applications

Nano crystalline spinel ferrites of Co0.5Ni0.5CexFe2−xO4 (x=0.01, 0.015, 0.02, 0.025 and 0.03) was prepared by modified solution combustion method using a mixture of fuels for the first time. The influence of rare earth Ce3+ substitution at the Fe3+ site on the structural, microstructural and dielec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Srinivasamurthy, K. M., Angadi, V. Jagadeesha, Kumar, P. Mohan, Nagaraj, B. S., Deepthy, P. R., Pasha, U. Mahaboob, Rudraswamy, B.
Format: Tagungsbericht
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nano crystalline spinel ferrites of Co0.5Ni0.5CexFe2−xO4 (x=0.01, 0.015, 0.02, 0.025 and 0.03) was prepared by modified solution combustion method using a mixture of fuels for the first time. The influence of rare earth Ce3+ substitution at the Fe3+ site on the structural, microstructural and dielectric properties of Co0.5Ni0.5CexFe2-xO4 was investigated. The X-ray diffraction (XRD) studies confirmed the formation of monophasic nano crystalline samples without any secondary phases. The crystallite size decreases and density increases with the increases of Ce3+ contents. Surface morphology was studied through Scanning Electron Microscopy (SEM). Dielectric properties of these ferrites have been studied at room temperature using impedance analyzer in the frequency range up to 20 MHz. The effect of frequency and composition on dielectric constant (ε’), dielectric loss (tanδ) and ac conductivity (σac) have been discussed in terms of hopping of charge carriers (Fe2+↔Fe3+). The decrease in dielectric loss with frequency follows Debye’s relaxation phenomena. Both the variation in tan loss and dielectric loss with frequency shows a similar. AC conductivity increases with the increases of frequency which directly proportional to concentration of Ce3+ ions follows Jonscher law. These Cerium doped Cobalt-nickel ferrites are very helpful for automotive applications.
ISSN:0094-243X
1551-7616
DOI:10.1063/1.5032612