A new route to finding bounds on the generalized spectrum of many physical operators

Here we obtain bounds on the generalized spectrum of that operator whose inverse, when it exists, gives Green’s function. We consider the wide range of physical problems that can be cast in a form where a constitutive equation J(x) = L(x)E(x) − h(x) with a source term h(x) holds for all x in some do...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2018-06, Vol.59 (6)
1. Verfasser: Milton, Graeme W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page
container_title Journal of mathematical physics
container_volume 59
creator Milton, Graeme W.
description Here we obtain bounds on the generalized spectrum of that operator whose inverse, when it exists, gives Green’s function. We consider the wide range of physical problems that can be cast in a form where a constitutive equation J(x) = L(x)E(x) − h(x) with a source term h(x) holds for all x in some domain Ω and relates fields E and J that satisfy appropriate differential constraints, symbolized by E∈EΩ0 and J∈J¯Ω, where EΩ0 and J¯Ω are orthogonal spaces that span the space HΩ of square-integrable fields in which h lies. Boundedness and coercivity conditions on the moduli L(x) ensure that there exists a unique E for any given h, i.e., E = GΩh, which then establishes the existence of Green’s function GΩ. We show that the coercivity condition is guaranteed to hold if weaker conditions, involving generalized quasiconvex functions, are satisfied. The advantage is that these weaker conditions are easier to verify, and for multiphase materials, they can be independent of the geometry of the phases. For L(x) depending linearly on a vector of parameters z = (z1, z2, …, zn), we obtain constraints on z that ensure that Green’s function exists and hence which provide bounds on the generalized spectrum.
doi_str_mv 10.1063/1.5032204
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_5032204</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2069026497</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-1d312d7a6ae723a693018b71dbf1842ee9b70ed4af512bf80a576c841e3f31fc3</originalsourceid><addsrcrecordid>eNp90E9LAzEQBfAgCtbqwW8Q8KSwdSbZbrLHUvwHBS_1vGR3J-2WNlmTLFI_vSv17OldfrwZHmO3CDOEQj7ibA5SCMjP2ARBl5kq5vqcTQCEyESu9SW7inEHgKjzfMLWC-7oiwc_JOLJc9u5tnMbXvvBtZF7x9OW-IYcBbPvvqnlsacmheHAveUH44683x5j15g99_2Ikg_xml1Ys49085dT9vH8tF6-Zqv3l7flYpU1UqiUYStRtMoUhpSQpigloK4VtrUdnxNEZa2A2tzYOYraajBzVTQ6R5JWom3klN2devvgPweKqdr5IbjxZCWgKEEUealGdX9STfAxBrJVH7qDCccKofodrcLqb7TRPpxsbLpkUufdP_gHTmhrpw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2069026497</pqid></control><display><type>article</type><title>A new route to finding bounds on the generalized spectrum of many physical operators</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Milton, Graeme W.</creator><creatorcontrib>Milton, Graeme W.</creatorcontrib><description>Here we obtain bounds on the generalized spectrum of that operator whose inverse, when it exists, gives Green’s function. We consider the wide range of physical problems that can be cast in a form where a constitutive equation J(x) = L(x)E(x) − h(x) with a source term h(x) holds for all x in some domain Ω and relates fields E and J that satisfy appropriate differential constraints, symbolized by E∈EΩ0 and J∈J¯Ω, where EΩ0 and J¯Ω are orthogonal spaces that span the space HΩ of square-integrable fields in which h lies. Boundedness and coercivity conditions on the moduli L(x) ensure that there exists a unique E for any given h, i.e., E = GΩh, which then establishes the existence of Green’s function GΩ. We show that the coercivity condition is guaranteed to hold if weaker conditions, involving generalized quasiconvex functions, are satisfied. The advantage is that these weaker conditions are easier to verify, and for multiphase materials, they can be independent of the geometry of the phases. For L(x) depending linearly on a vector of parameters z = (z1, z2, …, zn), we obtain constraints on z that ensure that Green’s function exists and hence which provide bounds on the generalized spectrum.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.5032204</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>New York: American Institute of Physics</publisher><subject>Coercivity ; Constitutive equations ; Constitutive relationships ; Geometry ; Mathematics ; Operators (mathematics) ; Physics ; Spectrum analysis ; Zinc</subject><ispartof>Journal of mathematical physics, 2018-06, Vol.59 (6)</ispartof><rights>Author(s)</rights><rights>Copyright American Institute of Physics Jun 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-1d312d7a6ae723a693018b71dbf1842ee9b70ed4af512bf80a576c841e3f31fc3</citedby><cites>FETCH-LOGICAL-c327t-1d312d7a6ae723a693018b71dbf1842ee9b70ed4af512bf80a576c841e3f31fc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.5032204$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids></links><search><creatorcontrib>Milton, Graeme W.</creatorcontrib><title>A new route to finding bounds on the generalized spectrum of many physical operators</title><title>Journal of mathematical physics</title><description>Here we obtain bounds on the generalized spectrum of that operator whose inverse, when it exists, gives Green’s function. We consider the wide range of physical problems that can be cast in a form where a constitutive equation J(x) = L(x)E(x) − h(x) with a source term h(x) holds for all x in some domain Ω and relates fields E and J that satisfy appropriate differential constraints, symbolized by E∈EΩ0 and J∈J¯Ω, where EΩ0 and J¯Ω are orthogonal spaces that span the space HΩ of square-integrable fields in which h lies. Boundedness and coercivity conditions on the moduli L(x) ensure that there exists a unique E for any given h, i.e., E = GΩh, which then establishes the existence of Green’s function GΩ. We show that the coercivity condition is guaranteed to hold if weaker conditions, involving generalized quasiconvex functions, are satisfied. The advantage is that these weaker conditions are easier to verify, and for multiphase materials, they can be independent of the geometry of the phases. For L(x) depending linearly on a vector of parameters z = (z1, z2, …, zn), we obtain constraints on z that ensure that Green’s function exists and hence which provide bounds on the generalized spectrum.</description><subject>Coercivity</subject><subject>Constitutive equations</subject><subject>Constitutive relationships</subject><subject>Geometry</subject><subject>Mathematics</subject><subject>Operators (mathematics)</subject><subject>Physics</subject><subject>Spectrum analysis</subject><subject>Zinc</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp90E9LAzEQBfAgCtbqwW8Q8KSwdSbZbrLHUvwHBS_1vGR3J-2WNlmTLFI_vSv17OldfrwZHmO3CDOEQj7ibA5SCMjP2ARBl5kq5vqcTQCEyESu9SW7inEHgKjzfMLWC-7oiwc_JOLJc9u5tnMbXvvBtZF7x9OW-IYcBbPvvqnlsacmheHAveUH44683x5j15g99_2Ikg_xml1Ys49085dT9vH8tF6-Zqv3l7flYpU1UqiUYStRtMoUhpSQpigloK4VtrUdnxNEZa2A2tzYOYraajBzVTQ6R5JWom3klN2devvgPweKqdr5IbjxZCWgKEEUealGdX9STfAxBrJVH7qDCccKofodrcLqb7TRPpxsbLpkUufdP_gHTmhrpw</recordid><startdate>201806</startdate><enddate>201806</enddate><creator>Milton, Graeme W.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope></search><sort><creationdate>201806</creationdate><title>A new route to finding bounds on the generalized spectrum of many physical operators</title><author>Milton, Graeme W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-1d312d7a6ae723a693018b71dbf1842ee9b70ed4af512bf80a576c841e3f31fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Coercivity</topic><topic>Constitutive equations</topic><topic>Constitutive relationships</topic><topic>Geometry</topic><topic>Mathematics</topic><topic>Operators (mathematics)</topic><topic>Physics</topic><topic>Spectrum analysis</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Milton, Graeme W.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Milton, Graeme W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new route to finding bounds on the generalized spectrum of many physical operators</atitle><jtitle>Journal of mathematical physics</jtitle><date>2018-06</date><risdate>2018</risdate><volume>59</volume><issue>6</issue><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>Here we obtain bounds on the generalized spectrum of that operator whose inverse, when it exists, gives Green’s function. We consider the wide range of physical problems that can be cast in a form where a constitutive equation J(x) = L(x)E(x) − h(x) with a source term h(x) holds for all x in some domain Ω and relates fields E and J that satisfy appropriate differential constraints, symbolized by E∈EΩ0 and J∈J¯Ω, where EΩ0 and J¯Ω are orthogonal spaces that span the space HΩ of square-integrable fields in which h lies. Boundedness and coercivity conditions on the moduli L(x) ensure that there exists a unique E for any given h, i.e., E = GΩh, which then establishes the existence of Green’s function GΩ. We show that the coercivity condition is guaranteed to hold if weaker conditions, involving generalized quasiconvex functions, are satisfied. The advantage is that these weaker conditions are easier to verify, and for multiphase materials, they can be independent of the geometry of the phases. For L(x) depending linearly on a vector of parameters z = (z1, z2, …, zn), we obtain constraints on z that ensure that Green’s function exists and hence which provide bounds on the generalized spectrum.</abstract><cop>New York</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5032204</doi><tpages>23</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-2488
ispartof Journal of mathematical physics, 2018-06, Vol.59 (6)
issn 0022-2488
1089-7658
language eng
recordid cdi_scitation_primary_10_1063_1_5032204
source AIP Journals Complete; Alma/SFX Local Collection
subjects Coercivity
Constitutive equations
Constitutive relationships
Geometry
Mathematics
Operators (mathematics)
Physics
Spectrum analysis
Zinc
title A new route to finding bounds on the generalized spectrum of many physical operators
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T18%3A10%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20route%20to%20finding%20bounds%20on%20the%20generalized%20spectrum%20of%20many%20physical%20operators&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Milton,%20Graeme%20W.&rft.date=2018-06&rft.volume=59&rft.issue=6&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.5032204&rft_dat=%3Cproquest_scita%3E2069026497%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2069026497&rft_id=info:pmid/&rfr_iscdi=true