Gaussian process regression of chirplet decomposed ultrasonic B-scans of a simulated design case

The US Air Force seeks to implement damage tolerant lifecycle management of composite structures. Nondestructive characterization of damage is a key input to this framework. One approach to characterization is model-based inversion of the ultrasonic response from damage features; however, the comput...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Wertz, John, Homa, Laura, Welter, John, Sparkman, Daniel, Aldrin, John
Format: Tagungsbericht
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 1949
creator Wertz, John
Homa, Laura
Welter, John
Sparkman, Daniel
Aldrin, John
description The US Air Force seeks to implement damage tolerant lifecycle management of composite structures. Nondestructive characterization of damage is a key input to this framework. One approach to characterization is model-based inversion of the ultrasonic response from damage features; however, the computational expense of modeling the ultrasonic waves within composites is a major hurdle to implementation. A surrogate forward model with sufficient accuracy and greater computational efficiency is therefore critical to enabling model-based inversion and damage characterization. In this work, a surrogate model is developed on the simulated ultrasonic response from delamination-like structures placed at different locations within a representative composite layup. The resulting B-scans are decomposed via the chirplet transform, and a Gaussian process model is trained on the chirplet parameters. The quality of the surrogate is tested by comparing the B-scan for a delamination configuration not represented within the training data set. The estimated B-scan has a maximum error of ∼15% for an estimated reduction in computational runtime of ∼95% for 200 function calls. This considerable reduction in computational expense makes full 3D characterization of impact damage tractable.
doi_str_mv 10.1063/1.5031602
format Conference Proceeding
fullrecord <record><control><sourceid>scitation</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_5031602</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>acp</sourcerecordid><originalsourceid>FETCH-LOGICAL-c300t-91ae8cc699d46e456c23a0890bc8b7821a3342e98eb029113b15c609f1ec6b7e3</originalsourceid><addsrcrecordid>eNp9kMFKw0AURQdRsFYX_sGshdT3Mskks9SirVBwo-AuTiYvdSTNhHmp4N-bYsGdq7s593I5QlwjLBC0usVFDgo1pCdihnmOSaFRn4oZgMmSNFNv5-KC-RMgNUVRzsT7yu6Zve3lEIMjZhlpG6f0oZehle7Dx6GjUTbkwm4ITI3cd2O0HHrv5H3CzvZ8IK1kv9t3dpyIhthve-ks06U4a23HdHXMuXh9fHhZrpPN8-ppebdJnAIYE4OWSue0MU2mKcu1S5WF0kDtyrooU7RKZSmZkurpOqKqMXcaTIvkdF2Qmoub3112frTjdL8aot_Z-F19hVhhdfRSDU37H4xQHUT-FdQPkplmFw</addsrcrecordid><sourcetype>Enrichment Source</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Gaussian process regression of chirplet decomposed ultrasonic B-scans of a simulated design case</title><source>AIP Journals Complete</source><creator>Wertz, John ; Homa, Laura ; Welter, John ; Sparkman, Daniel ; Aldrin, John</creator><contributor>Chimenti, Dale E. ; Bond, Leonard J.</contributor><creatorcontrib>Wertz, John ; Homa, Laura ; Welter, John ; Sparkman, Daniel ; Aldrin, John ; Chimenti, Dale E. ; Bond, Leonard J.</creatorcontrib><description>The US Air Force seeks to implement damage tolerant lifecycle management of composite structures. Nondestructive characterization of damage is a key input to this framework. One approach to characterization is model-based inversion of the ultrasonic response from damage features; however, the computational expense of modeling the ultrasonic waves within composites is a major hurdle to implementation. A surrogate forward model with sufficient accuracy and greater computational efficiency is therefore critical to enabling model-based inversion and damage characterization. In this work, a surrogate model is developed on the simulated ultrasonic response from delamination-like structures placed at different locations within a representative composite layup. The resulting B-scans are decomposed via the chirplet transform, and a Gaussian process model is trained on the chirplet parameters. The quality of the surrogate is tested by comparing the B-scan for a delamination configuration not represented within the training data set. The estimated B-scan has a maximum error of ∼15% for an estimated reduction in computational runtime of ∼95% for 200 function calls. This considerable reduction in computational expense makes full 3D characterization of impact damage tractable.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.5031602</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><ispartof>AIP conference proceedings, 2018, Vol.1949 (1)</ispartof><rights>Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c300t-91ae8cc699d46e456c23a0890bc8b7821a3342e98eb029113b15c609f1ec6b7e3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/1.5031602$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76127</link.rule.ids></links><search><contributor>Chimenti, Dale E.</contributor><contributor>Bond, Leonard J.</contributor><creatorcontrib>Wertz, John</creatorcontrib><creatorcontrib>Homa, Laura</creatorcontrib><creatorcontrib>Welter, John</creatorcontrib><creatorcontrib>Sparkman, Daniel</creatorcontrib><creatorcontrib>Aldrin, John</creatorcontrib><title>Gaussian process regression of chirplet decomposed ultrasonic B-scans of a simulated design case</title><title>AIP conference proceedings</title><description>The US Air Force seeks to implement damage tolerant lifecycle management of composite structures. Nondestructive characterization of damage is a key input to this framework. One approach to characterization is model-based inversion of the ultrasonic response from damage features; however, the computational expense of modeling the ultrasonic waves within composites is a major hurdle to implementation. A surrogate forward model with sufficient accuracy and greater computational efficiency is therefore critical to enabling model-based inversion and damage characterization. In this work, a surrogate model is developed on the simulated ultrasonic response from delamination-like structures placed at different locations within a representative composite layup. The resulting B-scans are decomposed via the chirplet transform, and a Gaussian process model is trained on the chirplet parameters. The quality of the surrogate is tested by comparing the B-scan for a delamination configuration not represented within the training data set. The estimated B-scan has a maximum error of ∼15% for an estimated reduction in computational runtime of ∼95% for 200 function calls. This considerable reduction in computational expense makes full 3D characterization of impact damage tractable.</description><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2018</creationdate><recordtype>conference_proceeding</recordtype><sourceid/><recordid>eNp9kMFKw0AURQdRsFYX_sGshdT3Mskks9SirVBwo-AuTiYvdSTNhHmp4N-bYsGdq7s593I5QlwjLBC0usVFDgo1pCdihnmOSaFRn4oZgMmSNFNv5-KC-RMgNUVRzsT7yu6Zve3lEIMjZhlpG6f0oZehle7Dx6GjUTbkwm4ITI3cd2O0HHrv5H3CzvZ8IK1kv9t3dpyIhthve-ks06U4a23HdHXMuXh9fHhZrpPN8-ppebdJnAIYE4OWSue0MU2mKcu1S5WF0kDtyrooU7RKZSmZkurpOqKqMXcaTIvkdF2Qmoub3112frTjdL8aot_Z-F19hVhhdfRSDU37H4xQHUT-FdQPkplmFw</recordid><startdate>20180420</startdate><enddate>20180420</enddate><creator>Wertz, John</creator><creator>Homa, Laura</creator><creator>Welter, John</creator><creator>Sparkman, Daniel</creator><creator>Aldrin, John</creator><scope/></search><sort><creationdate>20180420</creationdate><title>Gaussian process regression of chirplet decomposed ultrasonic B-scans of a simulated design case</title><author>Wertz, John ; Homa, Laura ; Welter, John ; Sparkman, Daniel ; Aldrin, John</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c300t-91ae8cc699d46e456c23a0890bc8b7821a3342e98eb029113b15c609f1ec6b7e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wertz, John</creatorcontrib><creatorcontrib>Homa, Laura</creatorcontrib><creatorcontrib>Welter, John</creatorcontrib><creatorcontrib>Sparkman, Daniel</creatorcontrib><creatorcontrib>Aldrin, John</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wertz, John</au><au>Homa, Laura</au><au>Welter, John</au><au>Sparkman, Daniel</au><au>Aldrin, John</au><au>Chimenti, Dale E.</au><au>Bond, Leonard J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Gaussian process regression of chirplet decomposed ultrasonic B-scans of a simulated design case</atitle><btitle>AIP conference proceedings</btitle><date>2018-04-20</date><risdate>2018</risdate><volume>1949</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>The US Air Force seeks to implement damage tolerant lifecycle management of composite structures. Nondestructive characterization of damage is a key input to this framework. One approach to characterization is model-based inversion of the ultrasonic response from damage features; however, the computational expense of modeling the ultrasonic waves within composites is a major hurdle to implementation. A surrogate forward model with sufficient accuracy and greater computational efficiency is therefore critical to enabling model-based inversion and damage characterization. In this work, a surrogate model is developed on the simulated ultrasonic response from delamination-like structures placed at different locations within a representative composite layup. The resulting B-scans are decomposed via the chirplet transform, and a Gaussian process model is trained on the chirplet parameters. The quality of the surrogate is tested by comparing the B-scan for a delamination configuration not represented within the training data set. The estimated B-scan has a maximum error of ∼15% for an estimated reduction in computational runtime of ∼95% for 200 function calls. This considerable reduction in computational expense makes full 3D characterization of impact damage tractable.</abstract><doi>10.1063/1.5031602</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2018, Vol.1949 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_scitation_primary_10_1063_1_5031602
source AIP Journals Complete
title Gaussian process regression of chirplet decomposed ultrasonic B-scans of a simulated design case
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T05%3A57%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Gaussian%20process%20regression%20of%20chirplet%20decomposed%20ultrasonic%20B-scans%20of%20a%20simulated%20design%20case&rft.btitle=AIP%20conference%20proceedings&rft.au=Wertz,%20John&rft.date=2018-04-20&rft.volume=1949&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/1.5031602&rft_dat=%3Cscitation%3Eacp%3C/scitation%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true