Employing unmanned aerial vehicle to monitor the health condition of wind turbines
Unmanned aerial vehicle (UAV) can gather the spatial information of huge structures, such as wind turbines, that can be difficult to obtain with traditional approaches. In this paper, the UAV used in the experiments is equipped with high resolution camera and thermal infrared camera. The high resolu...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 1949 |
creator | Huang, Yishuo Chiang, Chih-Hung Hsu, Keng-Tsang Cheng, Chia-Chi |
description | Unmanned aerial vehicle (UAV) can gather the spatial information of huge structures, such as wind turbines, that can be difficult to obtain with traditional approaches. In this paper, the UAV used in the experiments is equipped with high resolution camera and thermal infrared camera. The high resolution camera can provide a series of images with resolution up to 10 Megapixels. Those images can be used to form the 3D model using the digital photogrammetry technique. By comparing the 3D scenes of the same wind turbine at different times, possible displacement of the supporting tower of the wind turbine, caused by ground movement or foundation deterioration may be determined. The recorded thermal images are analyzed by applying the image segmentation methods to the surface temperature distribution. A series of sub-regions are separated by the differences of the surface temperature. The high-resolution optical image and the segmented thermal image are fused such that the surface anomalies are more easily identified for wind turbines. |
doi_str_mv | 10.1063/1.5031545 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>scitation</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_5031545</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>acp</sourcerecordid><originalsourceid>FETCH-LOGICAL-s225t-ae8a0d82dbf3d1ac97bd3548a09c2aac36a2f7b7d7971ba97f6c852ddac2904b3</originalsourceid><addsrcrecordid>eNotkMtKAzEYRoMoOFYXvkHWwtRcJpPJUkq1QkEQBXfDn8s4kZmkJKnSt9diVwe-xeHjIHRLyZKSlt_TpSCcikacoYoKQWvZ0vYcVYSopmYN_7hEVzl_EcKUlF2FXtfzbooHHz7xPswQgrMYXPIw4W83ejM5XCKeY_AlJlxGh0cHUxmxicH64mPAccA_Plhc9kn74PI1uhhgyu7mxAV6f1y_rTb19uXpefWwrTNjotTgOiC2Y1YP3FIwSmrLRfM3KsMADG-BDVJLK5WkGpQcWtMJZi0Ypkij-QLd_Xuz8QWOV_pd8jOkQ09Jf6zR0_5Ug_8CvZtTuA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Employing unmanned aerial vehicle to monitor the health condition of wind turbines</title><source>AIP Journals Complete</source><creator>Huang, Yishuo ; Chiang, Chih-Hung ; Hsu, Keng-Tsang ; Cheng, Chia-Chi</creator><contributor>Chimenti, Dale E. ; Bond, Leonard J.</contributor><creatorcontrib>Huang, Yishuo ; Chiang, Chih-Hung ; Hsu, Keng-Tsang ; Cheng, Chia-Chi ; Chimenti, Dale E. ; Bond, Leonard J.</creatorcontrib><description>Unmanned aerial vehicle (UAV) can gather the spatial information of huge structures, such as wind turbines, that can be difficult to obtain with traditional approaches. In this paper, the UAV used in the experiments is equipped with high resolution camera and thermal infrared camera. The high resolution camera can provide a series of images with resolution up to 10 Megapixels. Those images can be used to form the 3D model using the digital photogrammetry technique. By comparing the 3D scenes of the same wind turbine at different times, possible displacement of the supporting tower of the wind turbine, caused by ground movement or foundation deterioration may be determined. The recorded thermal images are analyzed by applying the image segmentation methods to the surface temperature distribution. A series of sub-regions are separated by the differences of the surface temperature. The high-resolution optical image and the segmented thermal image are fused such that the surface anomalies are more easily identified for wind turbines.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.5031545</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><ispartof>AIP conference proceedings, 2018, Vol.1949 (1)</ispartof><rights>Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/1.5031545$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76127</link.rule.ids></links><search><contributor>Chimenti, Dale E.</contributor><contributor>Bond, Leonard J.</contributor><creatorcontrib>Huang, Yishuo</creatorcontrib><creatorcontrib>Chiang, Chih-Hung</creatorcontrib><creatorcontrib>Hsu, Keng-Tsang</creatorcontrib><creatorcontrib>Cheng, Chia-Chi</creatorcontrib><title>Employing unmanned aerial vehicle to monitor the health condition of wind turbines</title><title>AIP conference proceedings</title><description>Unmanned aerial vehicle (UAV) can gather the spatial information of huge structures, such as wind turbines, that can be difficult to obtain with traditional approaches. In this paper, the UAV used in the experiments is equipped with high resolution camera and thermal infrared camera. The high resolution camera can provide a series of images with resolution up to 10 Megapixels. Those images can be used to form the 3D model using the digital photogrammetry technique. By comparing the 3D scenes of the same wind turbine at different times, possible displacement of the supporting tower of the wind turbine, caused by ground movement or foundation deterioration may be determined. The recorded thermal images are analyzed by applying the image segmentation methods to the surface temperature distribution. A series of sub-regions are separated by the differences of the surface temperature. The high-resolution optical image and the segmented thermal image are fused such that the surface anomalies are more easily identified for wind turbines.</description><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2018</creationdate><recordtype>conference_proceeding</recordtype><sourceid/><recordid>eNotkMtKAzEYRoMoOFYXvkHWwtRcJpPJUkq1QkEQBXfDn8s4kZmkJKnSt9diVwe-xeHjIHRLyZKSlt_TpSCcikacoYoKQWvZ0vYcVYSopmYN_7hEVzl_EcKUlF2FXtfzbooHHz7xPswQgrMYXPIw4W83ejM5XCKeY_AlJlxGh0cHUxmxicH64mPAccA_Plhc9kn74PI1uhhgyu7mxAV6f1y_rTb19uXpefWwrTNjotTgOiC2Y1YP3FIwSmrLRfM3KsMADG-BDVJLK5WkGpQcWtMJZi0Ypkij-QLd_Xuz8QWOV_pd8jOkQ09Jf6zR0_5Ug_8CvZtTuA</recordid><startdate>20180420</startdate><enddate>20180420</enddate><creator>Huang, Yishuo</creator><creator>Chiang, Chih-Hung</creator><creator>Hsu, Keng-Tsang</creator><creator>Cheng, Chia-Chi</creator><scope/></search><sort><creationdate>20180420</creationdate><title>Employing unmanned aerial vehicle to monitor the health condition of wind turbines</title><author>Huang, Yishuo ; Chiang, Chih-Hung ; Hsu, Keng-Tsang ; Cheng, Chia-Chi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-s225t-ae8a0d82dbf3d1ac97bd3548a09c2aac36a2f7b7d7971ba97f6c852ddac2904b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Yishuo</creatorcontrib><creatorcontrib>Chiang, Chih-Hung</creatorcontrib><creatorcontrib>Hsu, Keng-Tsang</creatorcontrib><creatorcontrib>Cheng, Chia-Chi</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Yishuo</au><au>Chiang, Chih-Hung</au><au>Hsu, Keng-Tsang</au><au>Cheng, Chia-Chi</au><au>Chimenti, Dale E.</au><au>Bond, Leonard J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Employing unmanned aerial vehicle to monitor the health condition of wind turbines</atitle><btitle>AIP conference proceedings</btitle><date>2018-04-20</date><risdate>2018</risdate><volume>1949</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Unmanned aerial vehicle (UAV) can gather the spatial information of huge structures, such as wind turbines, that can be difficult to obtain with traditional approaches. In this paper, the UAV used in the experiments is equipped with high resolution camera and thermal infrared camera. The high resolution camera can provide a series of images with resolution up to 10 Megapixels. Those images can be used to form the 3D model using the digital photogrammetry technique. By comparing the 3D scenes of the same wind turbine at different times, possible displacement of the supporting tower of the wind turbine, caused by ground movement or foundation deterioration may be determined. The recorded thermal images are analyzed by applying the image segmentation methods to the surface temperature distribution. A series of sub-regions are separated by the differences of the surface temperature. The high-resolution optical image and the segmented thermal image are fused such that the surface anomalies are more easily identified for wind turbines.</abstract><doi>10.1063/1.5031545</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2018, Vol.1949 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_scitation_primary_10_1063_1_5031545 |
source | AIP Journals Complete |
title | Employing unmanned aerial vehicle to monitor the health condition of wind turbines |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T17%3A37%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Employing%20unmanned%20aerial%20vehicle%20to%20monitor%20the%20health%20condition%20of%20wind%20turbines&rft.btitle=AIP%20conference%20proceedings&rft.au=Huang,%20Yishuo&rft.date=2018-04-20&rft.volume=1949&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/1.5031545&rft_dat=%3Cscitation%3Eacp%3C/scitation%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |