Disorder enhanced thermal conductivity anisotropy in two-dimensional materials and van der Waals heterostructures

Two-dimensional (2D) materials and van der Waals heterostructures can naturally function as directional heat spreaders in nanoelectronics due to their intrinsically anisotropic structure. In real nanoelectronic applications, disorders usually appear in those materials where their effects on anisotro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2018-08, Vol.124 (5)
Hauptverfasser: Kim, Kyunghoon, He, Jixiong, Ganeshan, Banu, Liu, Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page
container_title Journal of applied physics
container_volume 124
creator Kim, Kyunghoon
He, Jixiong
Ganeshan, Banu
Liu, Jun
description Two-dimensional (2D) materials and van der Waals heterostructures can naturally function as directional heat spreaders in nanoelectronics due to their intrinsically anisotropic structure. In real nanoelectronic applications, disorders usually appear in those materials where their effects on anisotropic thermal conductivity are not well-understood. We built simple graphite-like material models and systematically incorporated mass disorder or structural disorder into the structures. The anisotropic thermal conductivities calculated by equilibrium molecular dynamics simulations show that mass disorder and stacking disorder can effectively and anisotropically tune the thermal conductivity of 2D materials and van der Waals heterostructures. Compared with pristine graphite, the through-plane thermal conductivity can be reduced up to two orders of magnitude by the through-plane mass disorder, and the thermal anisotropy ratio (i.e., the ratio of in-plane to through-plane thermal conductivity) can be enhanced more than ten times. We attribute this counter-intuitive result to the dramatic decrease in phonon group velocity in the through-plane direction. Our results can shed some light on the thermal management in electronics incorporating 2D materials and van der Waals heterostructures.
doi_str_mv 10.1063/1.5031147
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_5031147</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2085771480</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-7f8f9d046c15237b1978836639634e2acf30493a7af80f48fcc0ed7d6ef10d523</originalsourceid><addsrcrecordid>eNqd0E1LAzEQBuAgCtbqwX8Q8KSwdbLZ3WSPUj-h4EXxGGI-aEp3s02ylf57U1rw7mlg5snLZBC6JjAj0NB7MquBElKxEzQhwNuC1TWcoglASQresvYcXcS4AiCE03aCNo8u-qBNwKZfyl4ZjdPShE6usfK9HlVyW5d2WPbZpeCHHXY9Tj--0K4zfXS-z7STyQQn1zE7jbeyx_vEL7nvLE2e-ZhCzhqDiZfozOa-uTrWKfp8fvqYvxaL95e3-cOiULRkqWCW21ZD1ShSl5R9k5ZxTpuGtg2tTCmVpVC1VDJpOdiKW6XAaKYbYwno_GSKbg65Q_Cb0cQkVn4MedsoSuA1Y6TikNXtQam8YwzGiiG4ToadICD2FxVEHC-a7d3BRuWSTPnr_8NbH_6gGLSlvzPJhls</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2085771480</pqid></control><display><type>article</type><title>Disorder enhanced thermal conductivity anisotropy in two-dimensional materials and van der Waals heterostructures</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Kim, Kyunghoon ; He, Jixiong ; Ganeshan, Banu ; Liu, Jun</creator><creatorcontrib>Kim, Kyunghoon ; He, Jixiong ; Ganeshan, Banu ; Liu, Jun</creatorcontrib><description>Two-dimensional (2D) materials and van der Waals heterostructures can naturally function as directional heat spreaders in nanoelectronics due to their intrinsically anisotropic structure. In real nanoelectronic applications, disorders usually appear in those materials where their effects on anisotropic thermal conductivity are not well-understood. We built simple graphite-like material models and systematically incorporated mass disorder or structural disorder into the structures. The anisotropic thermal conductivities calculated by equilibrium molecular dynamics simulations show that mass disorder and stacking disorder can effectively and anisotropically tune the thermal conductivity of 2D materials and van der Waals heterostructures. Compared with pristine graphite, the through-plane thermal conductivity can be reduced up to two orders of magnitude by the through-plane mass disorder, and the thermal anisotropy ratio (i.e., the ratio of in-plane to through-plane thermal conductivity) can be enhanced more than ten times. We attribute this counter-intuitive result to the dramatic decrease in phonon group velocity in the through-plane direction. Our results can shed some light on the thermal management in electronics incorporating 2D materials and van der Waals heterostructures.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.5031147</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Anisotropy ; Applied physics ; Computer simulation ; Conductivity ; Construction materials ; Graphite ; Group velocity ; Heat conductivity ; Heat transfer ; Heterostructures ; Molecular dynamics ; Nanoelectronics ; Spreaders ; Thermal conductivity ; Thermal management ; Two dimensional materials</subject><ispartof>Journal of applied physics, 2018-08, Vol.124 (5)</ispartof><rights>Author(s)</rights><rights>2018 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-7f8f9d046c15237b1978836639634e2acf30493a7af80f48fcc0ed7d6ef10d523</citedby><cites>FETCH-LOGICAL-c327t-7f8f9d046c15237b1978836639634e2acf30493a7af80f48fcc0ed7d6ef10d523</cites><orcidid>0000-0003-2118-2344</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/1.5031147$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76256</link.rule.ids></links><search><creatorcontrib>Kim, Kyunghoon</creatorcontrib><creatorcontrib>He, Jixiong</creatorcontrib><creatorcontrib>Ganeshan, Banu</creatorcontrib><creatorcontrib>Liu, Jun</creatorcontrib><title>Disorder enhanced thermal conductivity anisotropy in two-dimensional materials and van der Waals heterostructures</title><title>Journal of applied physics</title><description>Two-dimensional (2D) materials and van der Waals heterostructures can naturally function as directional heat spreaders in nanoelectronics due to their intrinsically anisotropic structure. In real nanoelectronic applications, disorders usually appear in those materials where their effects on anisotropic thermal conductivity are not well-understood. We built simple graphite-like material models and systematically incorporated mass disorder or structural disorder into the structures. The anisotropic thermal conductivities calculated by equilibrium molecular dynamics simulations show that mass disorder and stacking disorder can effectively and anisotropically tune the thermal conductivity of 2D materials and van der Waals heterostructures. Compared with pristine graphite, the through-plane thermal conductivity can be reduced up to two orders of magnitude by the through-plane mass disorder, and the thermal anisotropy ratio (i.e., the ratio of in-plane to through-plane thermal conductivity) can be enhanced more than ten times. We attribute this counter-intuitive result to the dramatic decrease in phonon group velocity in the through-plane direction. Our results can shed some light on the thermal management in electronics incorporating 2D materials and van der Waals heterostructures.</description><subject>Anisotropy</subject><subject>Applied physics</subject><subject>Computer simulation</subject><subject>Conductivity</subject><subject>Construction materials</subject><subject>Graphite</subject><subject>Group velocity</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Heterostructures</subject><subject>Molecular dynamics</subject><subject>Nanoelectronics</subject><subject>Spreaders</subject><subject>Thermal conductivity</subject><subject>Thermal management</subject><subject>Two dimensional materials</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqd0E1LAzEQBuAgCtbqwX8Q8KSwdbLZ3WSPUj-h4EXxGGI-aEp3s02ylf57U1rw7mlg5snLZBC6JjAj0NB7MquBElKxEzQhwNuC1TWcoglASQresvYcXcS4AiCE03aCNo8u-qBNwKZfyl4ZjdPShE6usfK9HlVyW5d2WPbZpeCHHXY9Tj--0K4zfXS-z7STyQQn1zE7jbeyx_vEL7nvLE2e-ZhCzhqDiZfozOa-uTrWKfp8fvqYvxaL95e3-cOiULRkqWCW21ZD1ShSl5R9k5ZxTpuGtg2tTCmVpVC1VDJpOdiKW6XAaKYbYwno_GSKbg65Q_Cb0cQkVn4MedsoSuA1Y6TikNXtQam8YwzGiiG4ToadICD2FxVEHC-a7d3BRuWSTPnr_8NbH_6gGLSlvzPJhls</recordid><startdate>20180807</startdate><enddate>20180807</enddate><creator>Kim, Kyunghoon</creator><creator>He, Jixiong</creator><creator>Ganeshan, Banu</creator><creator>Liu, Jun</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2118-2344</orcidid></search><sort><creationdate>20180807</creationdate><title>Disorder enhanced thermal conductivity anisotropy in two-dimensional materials and van der Waals heterostructures</title><author>Kim, Kyunghoon ; He, Jixiong ; Ganeshan, Banu ; Liu, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-7f8f9d046c15237b1978836639634e2acf30493a7af80f48fcc0ed7d6ef10d523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Anisotropy</topic><topic>Applied physics</topic><topic>Computer simulation</topic><topic>Conductivity</topic><topic>Construction materials</topic><topic>Graphite</topic><topic>Group velocity</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Heterostructures</topic><topic>Molecular dynamics</topic><topic>Nanoelectronics</topic><topic>Spreaders</topic><topic>Thermal conductivity</topic><topic>Thermal management</topic><topic>Two dimensional materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Kyunghoon</creatorcontrib><creatorcontrib>He, Jixiong</creatorcontrib><creatorcontrib>Ganeshan, Banu</creatorcontrib><creatorcontrib>Liu, Jun</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Kyunghoon</au><au>He, Jixiong</au><au>Ganeshan, Banu</au><au>Liu, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Disorder enhanced thermal conductivity anisotropy in two-dimensional materials and van der Waals heterostructures</atitle><jtitle>Journal of applied physics</jtitle><date>2018-08-07</date><risdate>2018</risdate><volume>124</volume><issue>5</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>Two-dimensional (2D) materials and van der Waals heterostructures can naturally function as directional heat spreaders in nanoelectronics due to their intrinsically anisotropic structure. In real nanoelectronic applications, disorders usually appear in those materials where their effects on anisotropic thermal conductivity are not well-understood. We built simple graphite-like material models and systematically incorporated mass disorder or structural disorder into the structures. The anisotropic thermal conductivities calculated by equilibrium molecular dynamics simulations show that mass disorder and stacking disorder can effectively and anisotropically tune the thermal conductivity of 2D materials and van der Waals heterostructures. Compared with pristine graphite, the through-plane thermal conductivity can be reduced up to two orders of magnitude by the through-plane mass disorder, and the thermal anisotropy ratio (i.e., the ratio of in-plane to through-plane thermal conductivity) can be enhanced more than ten times. We attribute this counter-intuitive result to the dramatic decrease in phonon group velocity in the through-plane direction. Our results can shed some light on the thermal management in electronics incorporating 2D materials and van der Waals heterostructures.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5031147</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-2118-2344</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2018-08, Vol.124 (5)
issn 0021-8979
1089-7550
language eng
recordid cdi_scitation_primary_10_1063_1_5031147
source AIP Journals Complete; Alma/SFX Local Collection
subjects Anisotropy
Applied physics
Computer simulation
Conductivity
Construction materials
Graphite
Group velocity
Heat conductivity
Heat transfer
Heterostructures
Molecular dynamics
Nanoelectronics
Spreaders
Thermal conductivity
Thermal management
Two dimensional materials
title Disorder enhanced thermal conductivity anisotropy in two-dimensional materials and van der Waals heterostructures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A37%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Disorder%20enhanced%20thermal%20conductivity%20anisotropy%20in%20two-dimensional%20materials%20and%20van%20der%20Waals%20heterostructures&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Kim,%20Kyunghoon&rft.date=2018-08-07&rft.volume=124&rft.issue=5&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/1.5031147&rft_dat=%3Cproquest_scita%3E2085771480%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2085771480&rft_id=info:pmid/&rfr_iscdi=true