Disorder enhanced thermal conductivity anisotropy in two-dimensional materials and van der Waals heterostructures
Two-dimensional (2D) materials and van der Waals heterostructures can naturally function as directional heat spreaders in nanoelectronics due to their intrinsically anisotropic structure. In real nanoelectronic applications, disorders usually appear in those materials where their effects on anisotro...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2018-08, Vol.124 (5) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | |
container_title | Journal of applied physics |
container_volume | 124 |
creator | Kim, Kyunghoon He, Jixiong Ganeshan, Banu Liu, Jun |
description | Two-dimensional (2D) materials and van der Waals heterostructures can naturally function as directional heat spreaders in nanoelectronics due to their intrinsically anisotropic structure. In real nanoelectronic applications, disorders usually appear in those materials where their effects on anisotropic thermal conductivity are not well-understood. We built simple graphite-like material models and systematically incorporated mass disorder or structural disorder into the structures. The anisotropic thermal conductivities calculated by equilibrium molecular dynamics simulations show that mass disorder and stacking disorder can effectively and anisotropically tune the thermal conductivity of 2D materials and van der Waals heterostructures. Compared with pristine graphite, the through-plane thermal conductivity can be reduced up to two orders of magnitude by the through-plane mass disorder, and the thermal anisotropy ratio (i.e., the ratio of in-plane to through-plane thermal conductivity) can be enhanced more than ten times. We attribute this counter-intuitive result to the dramatic decrease in phonon group velocity in the through-plane direction. Our results can shed some light on the thermal management in electronics incorporating 2D materials and van der Waals heterostructures. |
doi_str_mv | 10.1063/1.5031147 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_5031147</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2085771480</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-7f8f9d046c15237b1978836639634e2acf30493a7af80f48fcc0ed7d6ef10d523</originalsourceid><addsrcrecordid>eNqd0E1LAzEQBuAgCtbqwX8Q8KSwdbLZ3WSPUj-h4EXxGGI-aEp3s02ylf57U1rw7mlg5snLZBC6JjAj0NB7MquBElKxEzQhwNuC1TWcoglASQresvYcXcS4AiCE03aCNo8u-qBNwKZfyl4ZjdPShE6usfK9HlVyW5d2WPbZpeCHHXY9Tj--0K4zfXS-z7STyQQn1zE7jbeyx_vEL7nvLE2e-ZhCzhqDiZfozOa-uTrWKfp8fvqYvxaL95e3-cOiULRkqWCW21ZD1ShSl5R9k5ZxTpuGtg2tTCmVpVC1VDJpOdiKW6XAaKYbYwno_GSKbg65Q_Cb0cQkVn4MedsoSuA1Y6TikNXtQam8YwzGiiG4ToadICD2FxVEHC-a7d3BRuWSTPnr_8NbH_6gGLSlvzPJhls</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2085771480</pqid></control><display><type>article</type><title>Disorder enhanced thermal conductivity anisotropy in two-dimensional materials and van der Waals heterostructures</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Kim, Kyunghoon ; He, Jixiong ; Ganeshan, Banu ; Liu, Jun</creator><creatorcontrib>Kim, Kyunghoon ; He, Jixiong ; Ganeshan, Banu ; Liu, Jun</creatorcontrib><description>Two-dimensional (2D) materials and van der Waals heterostructures can naturally function as directional heat spreaders in nanoelectronics due to their intrinsically anisotropic structure. In real nanoelectronic applications, disorders usually appear in those materials where their effects on anisotropic thermal conductivity are not well-understood. We built simple graphite-like material models and systematically incorporated mass disorder or structural disorder into the structures. The anisotropic thermal conductivities calculated by equilibrium molecular dynamics simulations show that mass disorder and stacking disorder can effectively and anisotropically tune the thermal conductivity of 2D materials and van der Waals heterostructures. Compared with pristine graphite, the through-plane thermal conductivity can be reduced up to two orders of magnitude by the through-plane mass disorder, and the thermal anisotropy ratio (i.e., the ratio of in-plane to through-plane thermal conductivity) can be enhanced more than ten times. We attribute this counter-intuitive result to the dramatic decrease in phonon group velocity in the through-plane direction. Our results can shed some light on the thermal management in electronics incorporating 2D materials and van der Waals heterostructures.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.5031147</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Anisotropy ; Applied physics ; Computer simulation ; Conductivity ; Construction materials ; Graphite ; Group velocity ; Heat conductivity ; Heat transfer ; Heterostructures ; Molecular dynamics ; Nanoelectronics ; Spreaders ; Thermal conductivity ; Thermal management ; Two dimensional materials</subject><ispartof>Journal of applied physics, 2018-08, Vol.124 (5)</ispartof><rights>Author(s)</rights><rights>2018 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-7f8f9d046c15237b1978836639634e2acf30493a7af80f48fcc0ed7d6ef10d523</citedby><cites>FETCH-LOGICAL-c327t-7f8f9d046c15237b1978836639634e2acf30493a7af80f48fcc0ed7d6ef10d523</cites><orcidid>0000-0003-2118-2344</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/1.5031147$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76256</link.rule.ids></links><search><creatorcontrib>Kim, Kyunghoon</creatorcontrib><creatorcontrib>He, Jixiong</creatorcontrib><creatorcontrib>Ganeshan, Banu</creatorcontrib><creatorcontrib>Liu, Jun</creatorcontrib><title>Disorder enhanced thermal conductivity anisotropy in two-dimensional materials and van der Waals heterostructures</title><title>Journal of applied physics</title><description>Two-dimensional (2D) materials and van der Waals heterostructures can naturally function as directional heat spreaders in nanoelectronics due to their intrinsically anisotropic structure. In real nanoelectronic applications, disorders usually appear in those materials where their effects on anisotropic thermal conductivity are not well-understood. We built simple graphite-like material models and systematically incorporated mass disorder or structural disorder into the structures. The anisotropic thermal conductivities calculated by equilibrium molecular dynamics simulations show that mass disorder and stacking disorder can effectively and anisotropically tune the thermal conductivity of 2D materials and van der Waals heterostructures. Compared with pristine graphite, the through-plane thermal conductivity can be reduced up to two orders of magnitude by the through-plane mass disorder, and the thermal anisotropy ratio (i.e., the ratio of in-plane to through-plane thermal conductivity) can be enhanced more than ten times. We attribute this counter-intuitive result to the dramatic decrease in phonon group velocity in the through-plane direction. Our results can shed some light on the thermal management in electronics incorporating 2D materials and van der Waals heterostructures.</description><subject>Anisotropy</subject><subject>Applied physics</subject><subject>Computer simulation</subject><subject>Conductivity</subject><subject>Construction materials</subject><subject>Graphite</subject><subject>Group velocity</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Heterostructures</subject><subject>Molecular dynamics</subject><subject>Nanoelectronics</subject><subject>Spreaders</subject><subject>Thermal conductivity</subject><subject>Thermal management</subject><subject>Two dimensional materials</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqd0E1LAzEQBuAgCtbqwX8Q8KSwdbLZ3WSPUj-h4EXxGGI-aEp3s02ylf57U1rw7mlg5snLZBC6JjAj0NB7MquBElKxEzQhwNuC1TWcoglASQresvYcXcS4AiCE03aCNo8u-qBNwKZfyl4ZjdPShE6usfK9HlVyW5d2WPbZpeCHHXY9Tj--0K4zfXS-z7STyQQn1zE7jbeyx_vEL7nvLE2e-ZhCzhqDiZfozOa-uTrWKfp8fvqYvxaL95e3-cOiULRkqWCW21ZD1ShSl5R9k5ZxTpuGtg2tTCmVpVC1VDJpOdiKW6XAaKYbYwno_GSKbg65Q_Cb0cQkVn4MedsoSuA1Y6TikNXtQam8YwzGiiG4ToadICD2FxVEHC-a7d3BRuWSTPnr_8NbH_6gGLSlvzPJhls</recordid><startdate>20180807</startdate><enddate>20180807</enddate><creator>Kim, Kyunghoon</creator><creator>He, Jixiong</creator><creator>Ganeshan, Banu</creator><creator>Liu, Jun</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2118-2344</orcidid></search><sort><creationdate>20180807</creationdate><title>Disorder enhanced thermal conductivity anisotropy in two-dimensional materials and van der Waals heterostructures</title><author>Kim, Kyunghoon ; He, Jixiong ; Ganeshan, Banu ; Liu, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-7f8f9d046c15237b1978836639634e2acf30493a7af80f48fcc0ed7d6ef10d523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Anisotropy</topic><topic>Applied physics</topic><topic>Computer simulation</topic><topic>Conductivity</topic><topic>Construction materials</topic><topic>Graphite</topic><topic>Group velocity</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Heterostructures</topic><topic>Molecular dynamics</topic><topic>Nanoelectronics</topic><topic>Spreaders</topic><topic>Thermal conductivity</topic><topic>Thermal management</topic><topic>Two dimensional materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Kyunghoon</creatorcontrib><creatorcontrib>He, Jixiong</creatorcontrib><creatorcontrib>Ganeshan, Banu</creatorcontrib><creatorcontrib>Liu, Jun</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Kyunghoon</au><au>He, Jixiong</au><au>Ganeshan, Banu</au><au>Liu, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Disorder enhanced thermal conductivity anisotropy in two-dimensional materials and van der Waals heterostructures</atitle><jtitle>Journal of applied physics</jtitle><date>2018-08-07</date><risdate>2018</risdate><volume>124</volume><issue>5</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>Two-dimensional (2D) materials and van der Waals heterostructures can naturally function as directional heat spreaders in nanoelectronics due to their intrinsically anisotropic structure. In real nanoelectronic applications, disorders usually appear in those materials where their effects on anisotropic thermal conductivity are not well-understood. We built simple graphite-like material models and systematically incorporated mass disorder or structural disorder into the structures. The anisotropic thermal conductivities calculated by equilibrium molecular dynamics simulations show that mass disorder and stacking disorder can effectively and anisotropically tune the thermal conductivity of 2D materials and van der Waals heterostructures. Compared with pristine graphite, the through-plane thermal conductivity can be reduced up to two orders of magnitude by the through-plane mass disorder, and the thermal anisotropy ratio (i.e., the ratio of in-plane to through-plane thermal conductivity) can be enhanced more than ten times. We attribute this counter-intuitive result to the dramatic decrease in phonon group velocity in the through-plane direction. Our results can shed some light on the thermal management in electronics incorporating 2D materials and van der Waals heterostructures.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5031147</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-2118-2344</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 2018-08, Vol.124 (5) |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_scitation_primary_10_1063_1_5031147 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Anisotropy Applied physics Computer simulation Conductivity Construction materials Graphite Group velocity Heat conductivity Heat transfer Heterostructures Molecular dynamics Nanoelectronics Spreaders Thermal conductivity Thermal management Two dimensional materials |
title | Disorder enhanced thermal conductivity anisotropy in two-dimensional materials and van der Waals heterostructures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A37%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Disorder%20enhanced%20thermal%20conductivity%20anisotropy%20in%20two-dimensional%20materials%20and%20van%20der%20Waals%20heterostructures&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Kim,%20Kyunghoon&rft.date=2018-08-07&rft.volume=124&rft.issue=5&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/1.5031147&rft_dat=%3Cproquest_scita%3E2085771480%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2085771480&rft_id=info:pmid/&rfr_iscdi=true |