Melt fracture of linear low-density polyethylenes: Die geometry and molecular weight characteristics

The melt fracture phenomena of three linear low-density polyethylenes are investigated as a function of die geometry (capillary, slit, and annular) and molecular weight and its distribution. The onset of melt fracture instabilities is determined by using capillary rheometry, mainly studying the extr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of fluids (1994) 2018-05, Vol.30 (5)
Hauptverfasser: Ebrahimi, Marzieh, Tomkovic, Tanja, Liu, Guochang, Doufas, Antonios A., Hatzikiriakos, Savvas G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page
container_title Physics of fluids (1994)
container_volume 30
creator Ebrahimi, Marzieh
Tomkovic, Tanja
Liu, Guochang
Doufas, Antonios A.
Hatzikiriakos, Savvas G.
description The melt fracture phenomena of three linear low-density polyethylenes are investigated as a function of die geometry (capillary, slit, and annular) and molecular weight and its distribution. The onset of melt fracture instabilities is determined by using capillary rheometry, mainly studying the extrudate appearance using optical microscopy. It is found that the onset of flow instabilities (melt fracture phenomena) is significantly affected by die geometry and molecular weight characteristics of the polymers. Use of annular die eliminates the stick-slip transition (oscillating melt fracture) and delays the onset of sharkskin to higher values of shear rate and shear stress. Moreover, it is shown that the molecular weight characteristics of the polymers are well correlated with critical conditions for the onset of flow instabilities based on a criterion proposed in the literature [A. Allal et al., “Relationships between molecular structure and sharkskin defect for linear polymers,” J. Non-Newtonian Fluid Mech. 134, 127–135 (2006) and A. Allal and B. Vergnes, “Molecular design to eliminate sharkskin defect for linear polymers,” J. Non-Newtonian Fluid Mech. 146, 45–50 (2007)].
doi_str_mv 10.1063/1.5029380
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_5029380</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2088679089</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-ec637f051362ba015a330f861231ec1a4eb99fecb989a8419c073684639757cb3</originalsourceid><addsrcrecordid>eNp9kD1PwzAURS0EEqUw8A8sMYGU8hw3js2GWr6kIhaYI8d9aV25cbEdVfn3pGpnpvuG8-6VDiG3DCYMBH9kkwJyxSWckREDqbJSCHF-uEvIhODsklzFuAEArnIxIstPdIk2QZvUBaS-oc62qAN1fp8tsY029XTnXY9p3TtsMT7RuUW6Qr_FFHqq2yXdeoemc8PXHu1qnahZ60MjBhuTNfGaXDTaRbw55Zj8vL58z96zxdfbx-x5kZlc5SlDI3jZQMG4yGsNrNCcQyMFyzlDw_QUa6UaNLWSSsspUwZKLuRUcFUWpan5mNwde3fB_3YYU7XxXWiHySoHKUWpBiMDdX-kTPAxBmyqXbBbHfqKQXWQWLHqJHFgH45sNDbpZH37D_wH6hxxpg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2088679089</pqid></control><display><type>article</type><title>Melt fracture of linear low-density polyethylenes: Die geometry and molecular weight characteristics</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Ebrahimi, Marzieh ; Tomkovic, Tanja ; Liu, Guochang ; Doufas, Antonios A. ; Hatzikiriakos, Savvas G.</creator><creatorcontrib>Ebrahimi, Marzieh ; Tomkovic, Tanja ; Liu, Guochang ; Doufas, Antonios A. ; Hatzikiriakos, Savvas G.</creatorcontrib><description>The melt fracture phenomena of three linear low-density polyethylenes are investigated as a function of die geometry (capillary, slit, and annular) and molecular weight and its distribution. The onset of melt fracture instabilities is determined by using capillary rheometry, mainly studying the extrudate appearance using optical microscopy. It is found that the onset of flow instabilities (melt fracture phenomena) is significantly affected by die geometry and molecular weight characteristics of the polymers. Use of annular die eliminates the stick-slip transition (oscillating melt fracture) and delays the onset of sharkskin to higher values of shear rate and shear stress. Moreover, it is shown that the molecular weight characteristics of the polymers are well correlated with critical conditions for the onset of flow instabilities based on a criterion proposed in the literature [A. Allal et al., “Relationships between molecular structure and sharkskin defect for linear polymers,” J. Non-Newtonian Fluid Mech. 134, 127–135 (2006) and A. Allal and B. Vergnes, “Molecular design to eliminate sharkskin defect for linear polymers,” J. Non-Newtonian Fluid Mech. 146, 45–50 (2007)].</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/1.5029380</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Density ; Design defects ; Fluid dynamics ; Geometry ; Low density polyethylenes ; Melt fracture ; Molecular structure ; Molecular weight ; Molecular weight distribution ; Newtonian fluids ; Non Newtonian fluids ; Optical microscopy ; Orange peel ; Physics ; Polymers ; Rheometry ; Shear rate ; Shear stress</subject><ispartof>Physics of fluids (1994), 2018-05, Vol.30 (5)</ispartof><rights>Author(s)</rights><rights>2018 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-ec637f051362ba015a330f861231ec1a4eb99fecb989a8419c073684639757cb3</citedby><cites>FETCH-LOGICAL-c292t-ec637f051362ba015a330f861231ec1a4eb99fecb989a8419c073684639757cb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,794,4512,27924,27925</link.rule.ids></links><search><creatorcontrib>Ebrahimi, Marzieh</creatorcontrib><creatorcontrib>Tomkovic, Tanja</creatorcontrib><creatorcontrib>Liu, Guochang</creatorcontrib><creatorcontrib>Doufas, Antonios A.</creatorcontrib><creatorcontrib>Hatzikiriakos, Savvas G.</creatorcontrib><title>Melt fracture of linear low-density polyethylenes: Die geometry and molecular weight characteristics</title><title>Physics of fluids (1994)</title><description>The melt fracture phenomena of three linear low-density polyethylenes are investigated as a function of die geometry (capillary, slit, and annular) and molecular weight and its distribution. The onset of melt fracture instabilities is determined by using capillary rheometry, mainly studying the extrudate appearance using optical microscopy. It is found that the onset of flow instabilities (melt fracture phenomena) is significantly affected by die geometry and molecular weight characteristics of the polymers. Use of annular die eliminates the stick-slip transition (oscillating melt fracture) and delays the onset of sharkskin to higher values of shear rate and shear stress. Moreover, it is shown that the molecular weight characteristics of the polymers are well correlated with critical conditions for the onset of flow instabilities based on a criterion proposed in the literature [A. Allal et al., “Relationships between molecular structure and sharkskin defect for linear polymers,” J. Non-Newtonian Fluid Mech. 134, 127–135 (2006) and A. Allal and B. Vergnes, “Molecular design to eliminate sharkskin defect for linear polymers,” J. Non-Newtonian Fluid Mech. 146, 45–50 (2007)].</description><subject>Density</subject><subject>Design defects</subject><subject>Fluid dynamics</subject><subject>Geometry</subject><subject>Low density polyethylenes</subject><subject>Melt fracture</subject><subject>Molecular structure</subject><subject>Molecular weight</subject><subject>Molecular weight distribution</subject><subject>Newtonian fluids</subject><subject>Non Newtonian fluids</subject><subject>Optical microscopy</subject><subject>Orange peel</subject><subject>Physics</subject><subject>Polymers</subject><subject>Rheometry</subject><subject>Shear rate</subject><subject>Shear stress</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAURS0EEqUw8A8sMYGU8hw3js2GWr6kIhaYI8d9aV25cbEdVfn3pGpnpvuG8-6VDiG3DCYMBH9kkwJyxSWckREDqbJSCHF-uEvIhODsklzFuAEArnIxIstPdIk2QZvUBaS-oc62qAN1fp8tsY029XTnXY9p3TtsMT7RuUW6Qr_FFHqq2yXdeoemc8PXHu1qnahZ60MjBhuTNfGaXDTaRbw55Zj8vL58z96zxdfbx-x5kZlc5SlDI3jZQMG4yGsNrNCcQyMFyzlDw_QUa6UaNLWSSsspUwZKLuRUcFUWpan5mNwde3fB_3YYU7XxXWiHySoHKUWpBiMDdX-kTPAxBmyqXbBbHfqKQXWQWLHqJHFgH45sNDbpZH37D_wH6hxxpg</recordid><startdate>201805</startdate><enddate>201805</enddate><creator>Ebrahimi, Marzieh</creator><creator>Tomkovic, Tanja</creator><creator>Liu, Guochang</creator><creator>Doufas, Antonios A.</creator><creator>Hatzikiriakos, Savvas G.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>201805</creationdate><title>Melt fracture of linear low-density polyethylenes: Die geometry and molecular weight characteristics</title><author>Ebrahimi, Marzieh ; Tomkovic, Tanja ; Liu, Guochang ; Doufas, Antonios A. ; Hatzikiriakos, Savvas G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-ec637f051362ba015a330f861231ec1a4eb99fecb989a8419c073684639757cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Density</topic><topic>Design defects</topic><topic>Fluid dynamics</topic><topic>Geometry</topic><topic>Low density polyethylenes</topic><topic>Melt fracture</topic><topic>Molecular structure</topic><topic>Molecular weight</topic><topic>Molecular weight distribution</topic><topic>Newtonian fluids</topic><topic>Non Newtonian fluids</topic><topic>Optical microscopy</topic><topic>Orange peel</topic><topic>Physics</topic><topic>Polymers</topic><topic>Rheometry</topic><topic>Shear rate</topic><topic>Shear stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ebrahimi, Marzieh</creatorcontrib><creatorcontrib>Tomkovic, Tanja</creatorcontrib><creatorcontrib>Liu, Guochang</creatorcontrib><creatorcontrib>Doufas, Antonios A.</creatorcontrib><creatorcontrib>Hatzikiriakos, Savvas G.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ebrahimi, Marzieh</au><au>Tomkovic, Tanja</au><au>Liu, Guochang</au><au>Doufas, Antonios A.</au><au>Hatzikiriakos, Savvas G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Melt fracture of linear low-density polyethylenes: Die geometry and molecular weight characteristics</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2018-05</date><risdate>2018</risdate><volume>30</volume><issue>5</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>The melt fracture phenomena of three linear low-density polyethylenes are investigated as a function of die geometry (capillary, slit, and annular) and molecular weight and its distribution. The onset of melt fracture instabilities is determined by using capillary rheometry, mainly studying the extrudate appearance using optical microscopy. It is found that the onset of flow instabilities (melt fracture phenomena) is significantly affected by die geometry and molecular weight characteristics of the polymers. Use of annular die eliminates the stick-slip transition (oscillating melt fracture) and delays the onset of sharkskin to higher values of shear rate and shear stress. Moreover, it is shown that the molecular weight characteristics of the polymers are well correlated with critical conditions for the onset of flow instabilities based on a criterion proposed in the literature [A. Allal et al., “Relationships between molecular structure and sharkskin defect for linear polymers,” J. Non-Newtonian Fluid Mech. 134, 127–135 (2006) and A. Allal and B. Vergnes, “Molecular design to eliminate sharkskin defect for linear polymers,” J. Non-Newtonian Fluid Mech. 146, 45–50 (2007)].</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5029380</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1070-6631
ispartof Physics of fluids (1994), 2018-05, Vol.30 (5)
issn 1070-6631
1089-7666
language eng
recordid cdi_scitation_primary_10_1063_1_5029380
source AIP Journals Complete; Alma/SFX Local Collection
subjects Density
Design defects
Fluid dynamics
Geometry
Low density polyethylenes
Melt fracture
Molecular structure
Molecular weight
Molecular weight distribution
Newtonian fluids
Non Newtonian fluids
Optical microscopy
Orange peel
Physics
Polymers
Rheometry
Shear rate
Shear stress
title Melt fracture of linear low-density polyethylenes: Die geometry and molecular weight characteristics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T00%3A41%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Melt%20fracture%20of%20linear%20low-density%20polyethylenes:%20Die%20geometry%20and%20molecular%20weight%20characteristics&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Ebrahimi,%20Marzieh&rft.date=2018-05&rft.volume=30&rft.issue=5&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/1.5029380&rft_dat=%3Cproquest_scita%3E2088679089%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2088679089&rft_id=info:pmid/&rfr_iscdi=true