Electron swarm parameters and Townsend coefficients of atmospheric corona discharge plasmas by considering humidity

Humidity is a critical factor in atmospheric corona discharge. Fluid dynamics models have become a common method to explore the detailed corona discharge characteristics in humid air. However, the models require the specification of some key parameters, such as electron swarm parameters and Townsend...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of plasmas 2018-06, Vol.25 (6)
Hauptverfasser: Chen, Xiaoyue, He, Wangling, Du, Xinyu, Yuan, Xiaoqing, Lan, Lei, Wen, Xishan, Wan, Baoquan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page
container_title Physics of plasmas
container_volume 25
creator Chen, Xiaoyue
He, Wangling
Du, Xinyu
Yuan, Xiaoqing
Lan, Lei
Wen, Xishan
Wan, Baoquan
description Humidity is a critical factor in atmospheric corona discharge. Fluid dynamics models have become a common method to explore the detailed corona discharge characteristics in humid air. However, the models require the specification of some key parameters, such as electron swarm parameters and Townsend coefficients, which strongly depend on the electron energy distribution function (EEDF). In this paper, the EEDFs of dry air and water vapor are compared by solving the electron Boltzmann equation using classical the two-term approximation. Moreover, electron drift velocity in dry air and water vapor are compared and validated. Finally, effects of humidity on the electron swarm parameters and Townsend coefficients are also discussed. The results show that the electron drift velocity in dry air and water vapor in this paper is well consistent with the previous experimental results for a wide range. It is concluded that the humidity could increase the electron mobility coefficient and decrease the electron diffusion coefficient in low reduced electric field, which are insensitive to humidity in high reduced electric field. The strength of ionization and attachment reactions are both enhanced by humidity, and the corona onset electric fields increase with the increase in humidity.
doi_str_mv 10.1063/1.5025116
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_5025116</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2088311588</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-9b1ab9aa10de7920d37feacd28654787b14e59c8b7f92e4b0e84b03a6543fda93</originalsourceid><addsrcrecordid>eNqdkEtLAzEUhYMoWKsL_0HAlcLUZF6ZWUqpDxDcVHA33MmjTekkY25q6b83UsG9m3MPnO_eC4eQa85mnNXFPZ9VLK84r0_IhLOmzUQtytMfL1hW1-XHOblA3DDGyrpqJgQXWy1j8I7iHsJARwgw6KgDUnCKLv3eoU5Gem2MlVa7iNQbCnHwOK51sDJlaR-osijXEFaajlvAAZD2h5Q5tCphbkXXu8EqGw-X5MzAFvXV75yS98fFcv6cvb49vcwfXjNZ5CJmbc-hbwE4U1q0OVOFMBqkypu6KkUjel7qqpVNL0yb67JnuklSQEoLo6AtpuTmeHcM_nOnMXYbvwsuvexy1jQF51XSKbk9UjJ4xKBNNwY7QDh0nHU_nXa8--00sXdHFqWNEK13_4O_fPgDu1GZ4hvzVoeq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2088311588</pqid></control><display><type>article</type><title>Electron swarm parameters and Townsend coefficients of atmospheric corona discharge plasmas by considering humidity</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Chen, Xiaoyue ; He, Wangling ; Du, Xinyu ; Yuan, Xiaoqing ; Lan, Lei ; Wen, Xishan ; Wan, Baoquan</creator><creatorcontrib>Chen, Xiaoyue ; He, Wangling ; Du, Xinyu ; Yuan, Xiaoqing ; Lan, Lei ; Wen, Xishan ; Wan, Baoquan</creatorcontrib><description>Humidity is a critical factor in atmospheric corona discharge. Fluid dynamics models have become a common method to explore the detailed corona discharge characteristics in humid air. However, the models require the specification of some key parameters, such as electron swarm parameters and Townsend coefficients, which strongly depend on the electron energy distribution function (EEDF). In this paper, the EEDFs of dry air and water vapor are compared by solving the electron Boltzmann equation using classical the two-term approximation. Moreover, electron drift velocity in dry air and water vapor are compared and validated. Finally, effects of humidity on the electron swarm parameters and Townsend coefficients are also discussed. The results show that the electron drift velocity in dry air and water vapor in this paper is well consistent with the previous experimental results for a wide range. It is concluded that the humidity could increase the electron mobility coefficient and decrease the electron diffusion coefficient in low reduced electric field, which are insensitive to humidity in high reduced electric field. The strength of ionization and attachment reactions are both enhanced by humidity, and the corona onset electric fields increase with the increase in humidity.</description><identifier>ISSN: 1070-664X</identifier><identifier>EISSN: 1089-7674</identifier><identifier>DOI: 10.1063/1.5025116</identifier><identifier>CODEN: PHPAEN</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Aerodynamics ; Atmospheric models ; Boltzmann transport equation ; Computational fluid dynamics ; Diffusion coefficient ; Distribution functions ; Electric corona ; Electric field strength ; Electric fields ; Electron diffusion ; Electron drift velocity ; Electron energy ; Electron energy distribution ; Electron mobility ; Electron swarms ; Humidity ; Ionization ; Parameters ; Plasma ; Plasma physics ; Plasmas (physics) ; Stellar coronas ; Water vapor</subject><ispartof>Physics of plasmas, 2018-06, Vol.25 (6)</ispartof><rights>Author(s)</rights><rights>2018 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-9b1ab9aa10de7920d37feacd28654787b14e59c8b7f92e4b0e84b03a6543fda93</citedby><cites>FETCH-LOGICAL-c327t-9b1ab9aa10de7920d37feacd28654787b14e59c8b7f92e4b0e84b03a6543fda93</cites><orcidid>0000-0003-3660-5688</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/pop/article-lookup/doi/10.1063/1.5025116$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76126</link.rule.ids></links><search><creatorcontrib>Chen, Xiaoyue</creatorcontrib><creatorcontrib>He, Wangling</creatorcontrib><creatorcontrib>Du, Xinyu</creatorcontrib><creatorcontrib>Yuan, Xiaoqing</creatorcontrib><creatorcontrib>Lan, Lei</creatorcontrib><creatorcontrib>Wen, Xishan</creatorcontrib><creatorcontrib>Wan, Baoquan</creatorcontrib><title>Electron swarm parameters and Townsend coefficients of atmospheric corona discharge plasmas by considering humidity</title><title>Physics of plasmas</title><description>Humidity is a critical factor in atmospheric corona discharge. Fluid dynamics models have become a common method to explore the detailed corona discharge characteristics in humid air. However, the models require the specification of some key parameters, such as electron swarm parameters and Townsend coefficients, which strongly depend on the electron energy distribution function (EEDF). In this paper, the EEDFs of dry air and water vapor are compared by solving the electron Boltzmann equation using classical the two-term approximation. Moreover, electron drift velocity in dry air and water vapor are compared and validated. Finally, effects of humidity on the electron swarm parameters and Townsend coefficients are also discussed. The results show that the electron drift velocity in dry air and water vapor in this paper is well consistent with the previous experimental results for a wide range. It is concluded that the humidity could increase the electron mobility coefficient and decrease the electron diffusion coefficient in low reduced electric field, which are insensitive to humidity in high reduced electric field. The strength of ionization and attachment reactions are both enhanced by humidity, and the corona onset electric fields increase with the increase in humidity.</description><subject>Aerodynamics</subject><subject>Atmospheric models</subject><subject>Boltzmann transport equation</subject><subject>Computational fluid dynamics</subject><subject>Diffusion coefficient</subject><subject>Distribution functions</subject><subject>Electric corona</subject><subject>Electric field strength</subject><subject>Electric fields</subject><subject>Electron diffusion</subject><subject>Electron drift velocity</subject><subject>Electron energy</subject><subject>Electron energy distribution</subject><subject>Electron mobility</subject><subject>Electron swarms</subject><subject>Humidity</subject><subject>Ionization</subject><subject>Parameters</subject><subject>Plasma</subject><subject>Plasma physics</subject><subject>Plasmas (physics)</subject><subject>Stellar coronas</subject><subject>Water vapor</subject><issn>1070-664X</issn><issn>1089-7674</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqdkEtLAzEUhYMoWKsL_0HAlcLUZF6ZWUqpDxDcVHA33MmjTekkY25q6b83UsG9m3MPnO_eC4eQa85mnNXFPZ9VLK84r0_IhLOmzUQtytMfL1hW1-XHOblA3DDGyrpqJgQXWy1j8I7iHsJARwgw6KgDUnCKLv3eoU5Gem2MlVa7iNQbCnHwOK51sDJlaR-osijXEFaajlvAAZD2h5Q5tCphbkXXu8EqGw-X5MzAFvXV75yS98fFcv6cvb49vcwfXjNZ5CJmbc-hbwE4U1q0OVOFMBqkypu6KkUjel7qqpVNL0yb67JnuklSQEoLo6AtpuTmeHcM_nOnMXYbvwsuvexy1jQF51XSKbk9UjJ4xKBNNwY7QDh0nHU_nXa8--00sXdHFqWNEK13_4O_fPgDu1GZ4hvzVoeq</recordid><startdate>201806</startdate><enddate>201806</enddate><creator>Chen, Xiaoyue</creator><creator>He, Wangling</creator><creator>Du, Xinyu</creator><creator>Yuan, Xiaoqing</creator><creator>Lan, Lei</creator><creator>Wen, Xishan</creator><creator>Wan, Baoquan</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3660-5688</orcidid></search><sort><creationdate>201806</creationdate><title>Electron swarm parameters and Townsend coefficients of atmospheric corona discharge plasmas by considering humidity</title><author>Chen, Xiaoyue ; He, Wangling ; Du, Xinyu ; Yuan, Xiaoqing ; Lan, Lei ; Wen, Xishan ; Wan, Baoquan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-9b1ab9aa10de7920d37feacd28654787b14e59c8b7f92e4b0e84b03a6543fda93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aerodynamics</topic><topic>Atmospheric models</topic><topic>Boltzmann transport equation</topic><topic>Computational fluid dynamics</topic><topic>Diffusion coefficient</topic><topic>Distribution functions</topic><topic>Electric corona</topic><topic>Electric field strength</topic><topic>Electric fields</topic><topic>Electron diffusion</topic><topic>Electron drift velocity</topic><topic>Electron energy</topic><topic>Electron energy distribution</topic><topic>Electron mobility</topic><topic>Electron swarms</topic><topic>Humidity</topic><topic>Ionization</topic><topic>Parameters</topic><topic>Plasma</topic><topic>Plasma physics</topic><topic>Plasmas (physics)</topic><topic>Stellar coronas</topic><topic>Water vapor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Xiaoyue</creatorcontrib><creatorcontrib>He, Wangling</creatorcontrib><creatorcontrib>Du, Xinyu</creatorcontrib><creatorcontrib>Yuan, Xiaoqing</creatorcontrib><creatorcontrib>Lan, Lei</creatorcontrib><creatorcontrib>Wen, Xishan</creatorcontrib><creatorcontrib>Wan, Baoquan</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of plasmas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Xiaoyue</au><au>He, Wangling</au><au>Du, Xinyu</au><au>Yuan, Xiaoqing</au><au>Lan, Lei</au><au>Wen, Xishan</au><au>Wan, Baoquan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electron swarm parameters and Townsend coefficients of atmospheric corona discharge plasmas by considering humidity</atitle><jtitle>Physics of plasmas</jtitle><date>2018-06</date><risdate>2018</risdate><volume>25</volume><issue>6</issue><issn>1070-664X</issn><eissn>1089-7674</eissn><coden>PHPAEN</coden><abstract>Humidity is a critical factor in atmospheric corona discharge. Fluid dynamics models have become a common method to explore the detailed corona discharge characteristics in humid air. However, the models require the specification of some key parameters, such as electron swarm parameters and Townsend coefficients, which strongly depend on the electron energy distribution function (EEDF). In this paper, the EEDFs of dry air and water vapor are compared by solving the electron Boltzmann equation using classical the two-term approximation. Moreover, electron drift velocity in dry air and water vapor are compared and validated. Finally, effects of humidity on the electron swarm parameters and Townsend coefficients are also discussed. The results show that the electron drift velocity in dry air and water vapor in this paper is well consistent with the previous experimental results for a wide range. It is concluded that the humidity could increase the electron mobility coefficient and decrease the electron diffusion coefficient in low reduced electric field, which are insensitive to humidity in high reduced electric field. The strength of ionization and attachment reactions are both enhanced by humidity, and the corona onset electric fields increase with the increase in humidity.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5025116</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-3660-5688</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1070-664X
ispartof Physics of plasmas, 2018-06, Vol.25 (6)
issn 1070-664X
1089-7674
language eng
recordid cdi_scitation_primary_10_1063_1_5025116
source AIP Journals Complete; Alma/SFX Local Collection
subjects Aerodynamics
Atmospheric models
Boltzmann transport equation
Computational fluid dynamics
Diffusion coefficient
Distribution functions
Electric corona
Electric field strength
Electric fields
Electron diffusion
Electron drift velocity
Electron energy
Electron energy distribution
Electron mobility
Electron swarms
Humidity
Ionization
Parameters
Plasma
Plasma physics
Plasmas (physics)
Stellar coronas
Water vapor
title Electron swarm parameters and Townsend coefficients of atmospheric corona discharge plasmas by considering humidity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T04%3A32%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electron%20swarm%20parameters%20and%20Townsend%20coefficients%20of%20atmospheric%20corona%20discharge%20plasmas%20by%20considering%20humidity&rft.jtitle=Physics%20of%20plasmas&rft.au=Chen,%20Xiaoyue&rft.date=2018-06&rft.volume=25&rft.issue=6&rft.issn=1070-664X&rft.eissn=1089-7674&rft.coden=PHPAEN&rft_id=info:doi/10.1063/1.5025116&rft_dat=%3Cproquest_scita%3E2088311588%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2088311588&rft_id=info:pmid/&rfr_iscdi=true