Thin film metrology and microwave loss characterization of indium and aluminum/indium superconducting planar resonators

Scalable architectures characterized by quantum bits (qubits) with low error rates are essential to the development of a practical quantum computer. In the superconducting quantum computing implementation, understanding and minimizing material losses are crucial to the improvement of qubit performan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2018-05, Vol.123 (20)
Hauptverfasser: McRae, C. R. H., Béjanin, J. H., Earnest, C. T., McConkey, T. G., Rinehart, J. R., Deimert, C., Thomas, J. P., Wasilewski, Z. R., Mariantoni, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Scalable architectures characterized by quantum bits (qubits) with low error rates are essential to the development of a practical quantum computer. In the superconducting quantum computing implementation, understanding and minimizing material losses are crucial to the improvement of qubit performance. A new material that has recently received particular attention is indium, a low-temperature superconductor that can be used to bond pairs of chips containing standard aluminum-based qubit circuitry. In this work, we characterize microwave loss in indium and aluminum/indium thin films on silicon substrates by measuring superconducting coplanar waveguide resonators and estimating the main loss parameters at powers down to the sub-photon regime and at temperatures between 10 and 450 mK. We compare films deposited by thermal evaporation, sputtering, and molecular beam epitaxy. We study the effects of heating in a vacuum and ambient atmospheric pressure as well as the effects of pre-deposition wafer cleaning using hydrofluoric acid. The microwave measurements are supported by thin film metrology including secondary-ion mass spectrometry. For thermally evaporated and sputtered films, we find that two-level state are the dominant loss mechanism at low photon number and temperature, with a loss tangent due to native indium oxide of ∼ 5 × 10 − 5. The molecular beam epitaxial films show evidence of the formation of a substantial indium-silicon eutectic layer, which leads to a drastic degradation in resonator performance.
ISSN:0021-8979
1089-7550
DOI:10.1063/1.5020514