Self-organized criticality: An interplay between stable and turbulent regimes of multiple anodic double layers in glow discharge plasma

The role of self-organized criticality (SOC) in the transformation of multiple anodic double layers (MADLs) from the stable to turbulent regime has been investigated experimentally as the system approaches towards critical behavior. The experiment was performed in a modified glow discharge plasma se...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of plasmas 2018-05, Vol.25 (5)
Hauptverfasser: Alex, Prince, Carreras, Benjamin Andres, Arumugam, Saravanan, Sinha, Suraj Kumar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The role of self-organized criticality (SOC) in the transformation of multiple anodic double layers (MADLs) from the stable to turbulent regime has been investigated experimentally as the system approaches towards critical behavior. The experiment was performed in a modified glow discharge plasma setup, and the initial stable state of MADL comprising three concentric perceptible layers was produced when the drift velocity of electrons towards the anode exceeds the electron thermal velocity (νd ≥ 1.3νte). The macroscopic arrangement of both positive and negative charges in opposite layers of MADL is attributed to the self-organization scenario. Beyond νd ≥ 3νte, MADL begins to collapse and approaches critical and supercritical states through layer reduction which continue till the last remaining layer of the double layer is transformed into a highly unstable radiant anode glow. The avalanche resulting from the collapse of MADL leads to the rise of turbulence in the system. Long-range correlations, a key signature of SOC, have been explored in the turbulent floating potential fluctuations using the rescaled-range analysis technique. The result shows that the existence of the self-similarity regime with self-similarity parameter H varies between 0.55 and 0.91 for time lags longer than the decorrelation time. The power law tail in the rank function, slowly decaying tail of the autocorrelation function, and 1/f behavior of the power spectra of the fluctuations are consistent with the fact that SOC plays a conclusive role in the transformation of MADL from the stable to turbulent regime. Since the existence of SOC gives a measure of complexity in the system, the result provides the condition under which complexity arises in cold plasma.
ISSN:1070-664X
1089-7674
DOI:10.1063/1.5019930