Dislocation evolution during plastic deformation: Equations vs. discrete dislocation dynamics study
Equations for dislocation evolution bridge the gap between dislocation properties and continuum descriptions of plastic behavior of crystalline materials. Computer simulations can help us verify these evolution equations and find their fitting parameters. In this paper, we employ discrete dislocatio...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2018-02, Vol.123 (8) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 8 |
container_start_page | |
container_title | Journal of applied physics |
container_volume | 123 |
creator | Davoudi, Kamyar M. Vlassak, Joost J. |
description | Equations for dislocation evolution bridge the gap between dislocation properties and continuum descriptions of plastic behavior of crystalline materials. Computer simulations can help us verify these evolution equations and find their fitting parameters. In this paper, we employ discrete dislocation dynamics to establish a continuum-based model for the evolution of the dislocation structure in polycrystalline thin films. Expressions are developed for the density of activated dislocation sources, as well as dislocation nucleation and annihilation rates. We demonstrate how size effect naturally enters the evolution equation. Good agreement between the simulation and the model results is obtained. The current approach is based on a two-dimensional discrete dislocation dynamics model but can be extended to three-dimensional models. |
doi_str_mv | 10.1063/1.5013213 |
format | Article |
fullrecord | <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_5013213</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jap</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-ae79fc60058214a7c4bb81c7675edff391a5c0ea40e4b42974cc49187d7efe273</originalsourceid><addsrcrecordid>eNp9kE9LAzEQR4MoWKsHv0GuCltndpPNxpvU-gcKXvS8pJNEIttuTXYL_fbabdGD4Gne4fEYfoxdIkwQyuIGJxKwyLE4YiOESmdKSjhmI4Acs0orfcrOUvoAQKwKPWJ0H1LTkulCu-Ju0zb9QLaPYfXO141JXSBunW_jcpBu-eyzHyjxTZpwGxJF17kd_ITsdmWWgRJPXW-35-zEmya5i8Mds7eH2ev0KZu_PD5P7-YZFaXsMuOU9lQCyCpHYRSJxaJCUqWSznpfaDSSwBkBTixErpUgEhorZZXzLlfFmF3tuxTblKLz9TqGpYnbGqHerVNjfVjn273eu4lCNzz9I2_a-CvWa-v_k_-WvwDPZ3Wd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Dislocation evolution during plastic deformation: Equations vs. discrete dislocation dynamics study</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Davoudi, Kamyar M. ; Vlassak, Joost J.</creator><creatorcontrib>Davoudi, Kamyar M. ; Vlassak, Joost J.</creatorcontrib><description>Equations for dislocation evolution bridge the gap between dislocation properties and continuum descriptions of plastic behavior of crystalline materials. Computer simulations can help us verify these evolution equations and find their fitting parameters. In this paper, we employ discrete dislocation dynamics to establish a continuum-based model for the evolution of the dislocation structure in polycrystalline thin films. Expressions are developed for the density of activated dislocation sources, as well as dislocation nucleation and annihilation rates. We demonstrate how size effect naturally enters the evolution equation. Good agreement between the simulation and the model results is obtained. The current approach is based on a two-dimensional discrete dislocation dynamics model but can be extended to three-dimensional models.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.5013213</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><ispartof>Journal of applied physics, 2018-02, Vol.123 (8)</ispartof><rights>Author(s)</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-ae79fc60058214a7c4bb81c7675edff391a5c0ea40e4b42974cc49187d7efe273</citedby><cites>FETCH-LOGICAL-c365t-ae79fc60058214a7c4bb81c7675edff391a5c0ea40e4b42974cc49187d7efe273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/1.5013213$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,777,781,791,4498,27905,27906,76133</link.rule.ids></links><search><creatorcontrib>Davoudi, Kamyar M.</creatorcontrib><creatorcontrib>Vlassak, Joost J.</creatorcontrib><title>Dislocation evolution during plastic deformation: Equations vs. discrete dislocation dynamics study</title><title>Journal of applied physics</title><description>Equations for dislocation evolution bridge the gap between dislocation properties and continuum descriptions of plastic behavior of crystalline materials. Computer simulations can help us verify these evolution equations and find their fitting parameters. In this paper, we employ discrete dislocation dynamics to establish a continuum-based model for the evolution of the dislocation structure in polycrystalline thin films. Expressions are developed for the density of activated dislocation sources, as well as dislocation nucleation and annihilation rates. We demonstrate how size effect naturally enters the evolution equation. Good agreement between the simulation and the model results is obtained. The current approach is based on a two-dimensional discrete dislocation dynamics model but can be extended to three-dimensional models.</description><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQR4MoWKsHv0GuCltndpPNxpvU-gcKXvS8pJNEIttuTXYL_fbabdGD4Gne4fEYfoxdIkwQyuIGJxKwyLE4YiOESmdKSjhmI4Acs0orfcrOUvoAQKwKPWJ0H1LTkulCu-Ju0zb9QLaPYfXO141JXSBunW_jcpBu-eyzHyjxTZpwGxJF17kd_ITsdmWWgRJPXW-35-zEmya5i8Mds7eH2ev0KZu_PD5P7-YZFaXsMuOU9lQCyCpHYRSJxaJCUqWSznpfaDSSwBkBTixErpUgEhorZZXzLlfFmF3tuxTblKLz9TqGpYnbGqHerVNjfVjn273eu4lCNzz9I2_a-CvWa-v_k_-WvwDPZ3Wd</recordid><startdate>20180228</startdate><enddate>20180228</enddate><creator>Davoudi, Kamyar M.</creator><creator>Vlassak, Joost J.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180228</creationdate><title>Dislocation evolution during plastic deformation: Equations vs. discrete dislocation dynamics study</title><author>Davoudi, Kamyar M. ; Vlassak, Joost J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-ae79fc60058214a7c4bb81c7675edff391a5c0ea40e4b42974cc49187d7efe273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Davoudi, Kamyar M.</creatorcontrib><creatorcontrib>Vlassak, Joost J.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Davoudi, Kamyar M.</au><au>Vlassak, Joost J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dislocation evolution during plastic deformation: Equations vs. discrete dislocation dynamics study</atitle><jtitle>Journal of applied physics</jtitle><date>2018-02-28</date><risdate>2018</risdate><volume>123</volume><issue>8</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>Equations for dislocation evolution bridge the gap between dislocation properties and continuum descriptions of plastic behavior of crystalline materials. Computer simulations can help us verify these evolution equations and find their fitting parameters. In this paper, we employ discrete dislocation dynamics to establish a continuum-based model for the evolution of the dislocation structure in polycrystalline thin films. Expressions are developed for the density of activated dislocation sources, as well as dislocation nucleation and annihilation rates. We demonstrate how size effect naturally enters the evolution equation. Good agreement between the simulation and the model results is obtained. The current approach is based on a two-dimensional discrete dislocation dynamics model but can be extended to three-dimensional models.</abstract><doi>10.1063/1.5013213</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 2018-02, Vol.123 (8) |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_scitation_primary_10_1063_1_5013213 |
source | AIP Journals Complete; Alma/SFX Local Collection |
title | Dislocation evolution during plastic deformation: Equations vs. discrete dislocation dynamics study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T05%3A52%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dislocation%20evolution%20during%20plastic%20deformation:%20Equations%20vs.%20discrete%20dislocation%20dynamics%20study&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Davoudi,%20Kamyar%20M.&rft.date=2018-02-28&rft.volume=123&rft.issue=8&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/1.5013213&rft_dat=%3Cscitation_cross%3Ejap%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |