Dislocation evolution during plastic deformation: Equations vs. discrete dislocation dynamics study

Equations for dislocation evolution bridge the gap between dislocation properties and continuum descriptions of plastic behavior of crystalline materials. Computer simulations can help us verify these evolution equations and find their fitting parameters. In this paper, we employ discrete dislocatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2018-02, Vol.123 (8)
Hauptverfasser: Davoudi, Kamyar M., Vlassak, Joost J.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page
container_title Journal of applied physics
container_volume 123
creator Davoudi, Kamyar M.
Vlassak, Joost J.
description Equations for dislocation evolution bridge the gap between dislocation properties and continuum descriptions of plastic behavior of crystalline materials. Computer simulations can help us verify these evolution equations and find their fitting parameters. In this paper, we employ discrete dislocation dynamics to establish a continuum-based model for the evolution of the dislocation structure in polycrystalline thin films. Expressions are developed for the density of activated dislocation sources, as well as dislocation nucleation and annihilation rates. We demonstrate how size effect naturally enters the evolution equation. Good agreement between the simulation and the model results is obtained. The current approach is based on a two-dimensional discrete dislocation dynamics model but can be extended to three-dimensional models.
doi_str_mv 10.1063/1.5013213
format Article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_5013213</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jap</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-ae79fc60058214a7c4bb81c7675edff391a5c0ea40e4b42974cc49187d7efe273</originalsourceid><addsrcrecordid>eNp9kE9LAzEQR4MoWKsHv0GuCltndpPNxpvU-gcKXvS8pJNEIttuTXYL_fbabdGD4Gne4fEYfoxdIkwQyuIGJxKwyLE4YiOESmdKSjhmI4Acs0orfcrOUvoAQKwKPWJ0H1LTkulCu-Ju0zb9QLaPYfXO141JXSBunW_jcpBu-eyzHyjxTZpwGxJF17kd_ITsdmWWgRJPXW-35-zEmya5i8Mds7eH2ev0KZu_PD5P7-YZFaXsMuOU9lQCyCpHYRSJxaJCUqWSznpfaDSSwBkBTixErpUgEhorZZXzLlfFmF3tuxTblKLz9TqGpYnbGqHerVNjfVjn273eu4lCNzz9I2_a-CvWa-v_k_-WvwDPZ3Wd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Dislocation evolution during plastic deformation: Equations vs. discrete dislocation dynamics study</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Davoudi, Kamyar M. ; Vlassak, Joost J.</creator><creatorcontrib>Davoudi, Kamyar M. ; Vlassak, Joost J.</creatorcontrib><description>Equations for dislocation evolution bridge the gap between dislocation properties and continuum descriptions of plastic behavior of crystalline materials. Computer simulations can help us verify these evolution equations and find their fitting parameters. In this paper, we employ discrete dislocation dynamics to establish a continuum-based model for the evolution of the dislocation structure in polycrystalline thin films. Expressions are developed for the density of activated dislocation sources, as well as dislocation nucleation and annihilation rates. We demonstrate how size effect naturally enters the evolution equation. Good agreement between the simulation and the model results is obtained. The current approach is based on a two-dimensional discrete dislocation dynamics model but can be extended to three-dimensional models.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.5013213</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><ispartof>Journal of applied physics, 2018-02, Vol.123 (8)</ispartof><rights>Author(s)</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-ae79fc60058214a7c4bb81c7675edff391a5c0ea40e4b42974cc49187d7efe273</citedby><cites>FETCH-LOGICAL-c365t-ae79fc60058214a7c4bb81c7675edff391a5c0ea40e4b42974cc49187d7efe273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/1.5013213$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,777,781,791,4498,27905,27906,76133</link.rule.ids></links><search><creatorcontrib>Davoudi, Kamyar M.</creatorcontrib><creatorcontrib>Vlassak, Joost J.</creatorcontrib><title>Dislocation evolution during plastic deformation: Equations vs. discrete dislocation dynamics study</title><title>Journal of applied physics</title><description>Equations for dislocation evolution bridge the gap between dislocation properties and continuum descriptions of plastic behavior of crystalline materials. Computer simulations can help us verify these evolution equations and find their fitting parameters. In this paper, we employ discrete dislocation dynamics to establish a continuum-based model for the evolution of the dislocation structure in polycrystalline thin films. Expressions are developed for the density of activated dislocation sources, as well as dislocation nucleation and annihilation rates. We demonstrate how size effect naturally enters the evolution equation. Good agreement between the simulation and the model results is obtained. The current approach is based on a two-dimensional discrete dislocation dynamics model but can be extended to three-dimensional models.</description><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQR4MoWKsHv0GuCltndpPNxpvU-gcKXvS8pJNEIttuTXYL_fbabdGD4Gne4fEYfoxdIkwQyuIGJxKwyLE4YiOESmdKSjhmI4Acs0orfcrOUvoAQKwKPWJ0H1LTkulCu-Ju0zb9QLaPYfXO141JXSBunW_jcpBu-eyzHyjxTZpwGxJF17kd_ITsdmWWgRJPXW-35-zEmya5i8Mds7eH2ev0KZu_PD5P7-YZFaXsMuOU9lQCyCpHYRSJxaJCUqWSznpfaDSSwBkBTixErpUgEhorZZXzLlfFmF3tuxTblKLz9TqGpYnbGqHerVNjfVjn273eu4lCNzz9I2_a-CvWa-v_k_-WvwDPZ3Wd</recordid><startdate>20180228</startdate><enddate>20180228</enddate><creator>Davoudi, Kamyar M.</creator><creator>Vlassak, Joost J.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180228</creationdate><title>Dislocation evolution during plastic deformation: Equations vs. discrete dislocation dynamics study</title><author>Davoudi, Kamyar M. ; Vlassak, Joost J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-ae79fc60058214a7c4bb81c7675edff391a5c0ea40e4b42974cc49187d7efe273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Davoudi, Kamyar M.</creatorcontrib><creatorcontrib>Vlassak, Joost J.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Davoudi, Kamyar M.</au><au>Vlassak, Joost J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dislocation evolution during plastic deformation: Equations vs. discrete dislocation dynamics study</atitle><jtitle>Journal of applied physics</jtitle><date>2018-02-28</date><risdate>2018</risdate><volume>123</volume><issue>8</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>Equations for dislocation evolution bridge the gap between dislocation properties and continuum descriptions of plastic behavior of crystalline materials. Computer simulations can help us verify these evolution equations and find their fitting parameters. In this paper, we employ discrete dislocation dynamics to establish a continuum-based model for the evolution of the dislocation structure in polycrystalline thin films. Expressions are developed for the density of activated dislocation sources, as well as dislocation nucleation and annihilation rates. We demonstrate how size effect naturally enters the evolution equation. Good agreement between the simulation and the model results is obtained. The current approach is based on a two-dimensional discrete dislocation dynamics model but can be extended to three-dimensional models.</abstract><doi>10.1063/1.5013213</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2018-02, Vol.123 (8)
issn 0021-8979
1089-7550
language eng
recordid cdi_scitation_primary_10_1063_1_5013213
source AIP Journals Complete; Alma/SFX Local Collection
title Dislocation evolution during plastic deformation: Equations vs. discrete dislocation dynamics study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T05%3A52%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dislocation%20evolution%20during%20plastic%20deformation:%20Equations%20vs.%20discrete%20dislocation%20dynamics%20study&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Davoudi,%20Kamyar%20M.&rft.date=2018-02-28&rft.volume=123&rft.issue=8&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/1.5013213&rft_dat=%3Cscitation_cross%3Ejap%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true