On the integration of a class of nonlinear systems of ordinary differential equations

For each associative, commutative, and unitary algebra over the field of real or complex numbers and an integrable nonlinear ordinary differential equation we can to construct integrable systems of ordinary differential equations and integrable systems of partial differential equations. In this pape...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Talyshev, Aleksandr A.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 1907
creator Talyshev, Aleksandr A.
description For each associative, commutative, and unitary algebra over the field of real or complex numbers and an integrable nonlinear ordinary differential equation we can to construct integrable systems of ordinary differential equations and integrable systems of partial differential equations. In this paper we consider in some sense the inverse problem. Determine the conditions under which a given system of ordinary differential equations can be represented as a differential equation in some associative, commutative and unitary algebra. It is also shown that associativity is not a necessary condition.
doi_str_mv 10.1063/1.5012679
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_5012679</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2116053827</sourcerecordid><originalsourceid>FETCH-LOGICAL-p253t-cfd6259452e744351b8ae19ddad24948bebe3c619635e013ae8ba1992f86f41c3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKsL_0HAnTA1N6-ZLKVoFQrdWHAXMjOJpkwz0yQV-u_tC9y5upfLd849HITugUyASPYEE0GAylJdoBEIAUUpQV6iESGKF5Szz2t0k9KKEKrKshqh5SLg_G2xD9l-RZN9H3DvsMFNZ1I6rKEPnQ_WRJx2Kdv18djH1gcTd7j1ztloQ_amw3azPTqkW3TlTJfs3XmO0fL15WP6VswXs_fp87wYqGC5aFwrqVBcUFtyzgTUlbGg2ta0lCte1ba2rJGgJBOWADO2qg0oRV0lHYeGjdHDyXeI_WZrU9arfhvD_qWmAJIIVtFyTz2eqNT4fAyoh-jX-_j6p48a9LkyPbTuPxiIPnT8J2C_GVtuTg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2116053827</pqid></control><display><type>conference_proceeding</type><title>On the integration of a class of nonlinear systems of ordinary differential equations</title><source>AIP Journals Complete</source><creator>Talyshev, Aleksandr A.</creator><contributor>Popov, Sergey V. ; Ivanova, Anna O. ; Egorov, Ivan E. ; Antonov, Mikhail Yu ; Vabishchevich, Petr N. ; Lazarev, Nyurgun P. ; Troeva, Marianna S. ; Grigor’ev, Yuri M.</contributor><creatorcontrib>Talyshev, Aleksandr A. ; Popov, Sergey V. ; Ivanova, Anna O. ; Egorov, Ivan E. ; Antonov, Mikhail Yu ; Vabishchevich, Petr N. ; Lazarev, Nyurgun P. ; Troeva, Marianna S. ; Grigor’ev, Yuri M.</creatorcontrib><description>For each associative, commutative, and unitary algebra over the field of real or complex numbers and an integrable nonlinear ordinary differential equation we can to construct integrable systems of ordinary differential equations and integrable systems of partial differential equations. In this paper we consider in some sense the inverse problem. Determine the conditions under which a given system of ordinary differential equations can be represented as a differential equation in some associative, commutative and unitary algebra. It is also shown that associativity is not a necessary condition.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.5012679</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Complex numbers ; Inverse problems ; Mathematical analysis ; Nonlinear systems ; Ordinary differential equations ; Partial differential equations</subject><ispartof>AIP conference proceedings, 2017, Vol.1907 (1)</ispartof><rights>Author(s)</rights><rights>2017 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/1.5012679$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,790,4498,23909,23910,25118,27901,27902,76127</link.rule.ids></links><search><contributor>Popov, Sergey V.</contributor><contributor>Ivanova, Anna O.</contributor><contributor>Egorov, Ivan E.</contributor><contributor>Antonov, Mikhail Yu</contributor><contributor>Vabishchevich, Petr N.</contributor><contributor>Lazarev, Nyurgun P.</contributor><contributor>Troeva, Marianna S.</contributor><contributor>Grigor’ev, Yuri M.</contributor><creatorcontrib>Talyshev, Aleksandr A.</creatorcontrib><title>On the integration of a class of nonlinear systems of ordinary differential equations</title><title>AIP conference proceedings</title><description>For each associative, commutative, and unitary algebra over the field of real or complex numbers and an integrable nonlinear ordinary differential equation we can to construct integrable systems of ordinary differential equations and integrable systems of partial differential equations. In this paper we consider in some sense the inverse problem. Determine the conditions under which a given system of ordinary differential equations can be represented as a differential equation in some associative, commutative and unitary algebra. It is also shown that associativity is not a necessary condition.</description><subject>Complex numbers</subject><subject>Inverse problems</subject><subject>Mathematical analysis</subject><subject>Nonlinear systems</subject><subject>Ordinary differential equations</subject><subject>Partial differential equations</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2017</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kEtLAzEUhYMoWKsL_0HAnTA1N6-ZLKVoFQrdWHAXMjOJpkwz0yQV-u_tC9y5upfLd849HITugUyASPYEE0GAylJdoBEIAUUpQV6iESGKF5Szz2t0k9KKEKrKshqh5SLg_G2xD9l-RZN9H3DvsMFNZ1I6rKEPnQ_WRJx2Kdv18djH1gcTd7j1ztloQ_amw3azPTqkW3TlTJfs3XmO0fL15WP6VswXs_fp87wYqGC5aFwrqVBcUFtyzgTUlbGg2ta0lCte1ba2rJGgJBOWADO2qg0oRV0lHYeGjdHDyXeI_WZrU9arfhvD_qWmAJIIVtFyTz2eqNT4fAyoh-jX-_j6p48a9LkyPbTuPxiIPnT8J2C_GVtuTg</recordid><startdate>20171114</startdate><enddate>20171114</enddate><creator>Talyshev, Aleksandr A.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20171114</creationdate><title>On the integration of a class of nonlinear systems of ordinary differential equations</title><author>Talyshev, Aleksandr A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p253t-cfd6259452e744351b8ae19ddad24948bebe3c619635e013ae8ba1992f86f41c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Complex numbers</topic><topic>Inverse problems</topic><topic>Mathematical analysis</topic><topic>Nonlinear systems</topic><topic>Ordinary differential equations</topic><topic>Partial differential equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Talyshev, Aleksandr A.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Talyshev, Aleksandr A.</au><au>Popov, Sergey V.</au><au>Ivanova, Anna O.</au><au>Egorov, Ivan E.</au><au>Antonov, Mikhail Yu</au><au>Vabishchevich, Petr N.</au><au>Lazarev, Nyurgun P.</au><au>Troeva, Marianna S.</au><au>Grigor’ev, Yuri M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>On the integration of a class of nonlinear systems of ordinary differential equations</atitle><btitle>AIP conference proceedings</btitle><date>2017-11-14</date><risdate>2017</risdate><volume>1907</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>For each associative, commutative, and unitary algebra over the field of real or complex numbers and an integrable nonlinear ordinary differential equation we can to construct integrable systems of ordinary differential equations and integrable systems of partial differential equations. In this paper we consider in some sense the inverse problem. Determine the conditions under which a given system of ordinary differential equations can be represented as a differential equation in some associative, commutative and unitary algebra. It is also shown that associativity is not a necessary condition.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5012679</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2017, Vol.1907 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_scitation_primary_10_1063_1_5012679
source AIP Journals Complete
subjects Complex numbers
Inverse problems
Mathematical analysis
Nonlinear systems
Ordinary differential equations
Partial differential equations
title On the integration of a class of nonlinear systems of ordinary differential equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T13%3A01%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=On%20the%20integration%20of%20a%20class%20of%20nonlinear%20systems%20of%20ordinary%20differential%20equations&rft.btitle=AIP%20conference%20proceedings&rft.au=Talyshev,%20Aleksandr%20A.&rft.date=2017-11-14&rft.volume=1907&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/1.5012679&rft_dat=%3Cproquest_scita%3E2116053827%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2116053827&rft_id=info:pmid/&rfr_iscdi=true