Symmetric embedded predictor–predictor–corrector (EPPCM) methods with vanished phase–lag and its derivatives for second order problems
In this paper we describe the embedded predictor–predictor–corrector methods with two–stages of prediction and with vanished phase-lag and its derivatives. Since the methods described in this paper have two–stages of prediction, the symbol (EPPCM) is used. The first stage of the predictor of the new...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 1906 |
creator | Stasinos, P. I. Simos, T. E. |
description | In this paper we describe the embedded predictor–predictor–corrector methods with two–stages of prediction and with vanished phase-lag and its derivatives. Since the methods described in this paper have two–stages of prediction, the symbol (EPPCM) is used. The first stage of the predictor of the new presented algorithm is based on the linear ten–step symmetric method of Quinlan–Tremaine [1]. We call the new scheme non–linear since has three–stages. We use the methods presented in this paper on the numerical solution of:
1.
initial–value problems (IVPs) with oscillatory solutions,
2.
boundary–value problems (IVPs) with oscillatory solutions,
3.
orbital problems
4.
the Schrödinger equation and related problems.
We note here, that the algorithms presented in this paper belong to the embedded methods. The numerical and theoretical results show the effectiveness of the new obtained embedded finite difference pairs. |
doi_str_mv | 10.1063/1.5012499 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_5012499</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2116023609</sourcerecordid><originalsourceid>FETCH-LOGICAL-p253t-c5dc29943b1a5ed3c4b3286f7ab1e6ddce2a1d884f42021200595341790535323</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWKsL3yDgRoWp-ZnMTJZS6g9ULKjgbsgkGSelM6lJOtKdD-DON_RJTLGgK1f3wP3OPZcDwDFGI4wyeoFHDGGScr4DBpgxnOQZznbBACGeJiSlz_vgwPs5QoTneTEAHw_rttXBGQl1W2mltIJLp5WRwbqv98-_Wlrn9EbD08lsNr47g9HZWOXhmwkN7EVnfLPxN8LryC_ECxSdgiZ4qLQzvQim1x7W8YLX0saVdXERA2210K0_BHu1WHh9tJ1D8HQ1eRzfJNP769vx5TRZEkZDIpmShPOUVlgwrahMK0qKrM5FhXWmlNREYFUUaZ0SRDBBiHFGU5xzxCijhA7Byc_dGPy60j6Uc7tyXYwsCcYZIjRDPFLnP5SXJsTXbVcunWmFW5cYlZu2S1xu2_4P7q37Bculquk3URqE5w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2116023609</pqid></control><display><type>conference_proceeding</type><title>Symmetric embedded predictor–predictor–corrector (EPPCM) methods with vanished phase–lag and its derivatives for second order problems</title><source>AIP Journals Complete</source><creator>Stasinos, P. I. ; Simos, T. E.</creator><contributor>Simos, Theodore E. ; Kalogiratou, Zacharoula ; Monovasilis, Theodore</contributor><creatorcontrib>Stasinos, P. I. ; Simos, T. E. ; Simos, Theodore E. ; Kalogiratou, Zacharoula ; Monovasilis, Theodore</creatorcontrib><description>In this paper we describe the embedded predictor–predictor–corrector methods with two–stages of prediction and with vanished phase-lag and its derivatives. Since the methods described in this paper have two–stages of prediction, the symbol (EPPCM) is used. The first stage of the predictor of the new presented algorithm is based on the linear ten–step symmetric method of Quinlan–Tremaine [1]. We call the new scheme non–linear since has three–stages. We use the methods presented in this paper on the numerical solution of:
1.
initial–value problems (IVPs) with oscillatory solutions,
2.
boundary–value problems (IVPs) with oscillatory solutions,
3.
orbital problems
4.
the Schrödinger equation and related problems.
We note here, that the algorithms presented in this paper belong to the embedded methods. The numerical and theoretical results show the effectiveness of the new obtained embedded finite difference pairs.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.5012499</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Algorithms ; Boundary value problems ; Derivatives ; Finite difference method ; Numerical methods ; Phase lag ; Predictor-corrector methods ; Schrodinger equation</subject><ispartof>AIP conference proceedings, 2017, Vol.1906 (1)</ispartof><rights>Author(s)</rights><rights>2017 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/1.5012499$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,778,782,787,788,792,4500,23917,23918,25127,27911,27912,76139</link.rule.ids></links><search><contributor>Simos, Theodore E.</contributor><contributor>Kalogiratou, Zacharoula</contributor><contributor>Monovasilis, Theodore</contributor><creatorcontrib>Stasinos, P. I.</creatorcontrib><creatorcontrib>Simos, T. E.</creatorcontrib><title>Symmetric embedded predictor–predictor–corrector (EPPCM) methods with vanished phase–lag and its derivatives for second order problems</title><title>AIP conference proceedings</title><description>In this paper we describe the embedded predictor–predictor–corrector methods with two–stages of prediction and with vanished phase-lag and its derivatives. Since the methods described in this paper have two–stages of prediction, the symbol (EPPCM) is used. The first stage of the predictor of the new presented algorithm is based on the linear ten–step symmetric method of Quinlan–Tremaine [1]. We call the new scheme non–linear since has three–stages. We use the methods presented in this paper on the numerical solution of:
1.
initial–value problems (IVPs) with oscillatory solutions,
2.
boundary–value problems (IVPs) with oscillatory solutions,
3.
orbital problems
4.
the Schrödinger equation and related problems.
We note here, that the algorithms presented in this paper belong to the embedded methods. The numerical and theoretical results show the effectiveness of the new obtained embedded finite difference pairs.</description><subject>Algorithms</subject><subject>Boundary value problems</subject><subject>Derivatives</subject><subject>Finite difference method</subject><subject>Numerical methods</subject><subject>Phase lag</subject><subject>Predictor-corrector methods</subject><subject>Schrodinger equation</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2017</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kM1KAzEUhYMoWKsL3yDgRoWp-ZnMTJZS6g9ULKjgbsgkGSelM6lJOtKdD-DON_RJTLGgK1f3wP3OPZcDwDFGI4wyeoFHDGGScr4DBpgxnOQZznbBACGeJiSlz_vgwPs5QoTneTEAHw_rttXBGQl1W2mltIJLp5WRwbqv98-_Wlrn9EbD08lsNr47g9HZWOXhmwkN7EVnfLPxN8LryC_ECxSdgiZ4qLQzvQim1x7W8YLX0saVdXERA2210K0_BHu1WHh9tJ1D8HQ1eRzfJNP769vx5TRZEkZDIpmShPOUVlgwrahMK0qKrM5FhXWmlNREYFUUaZ0SRDBBiHFGU5xzxCijhA7Byc_dGPy60j6Uc7tyXYwsCcYZIjRDPFLnP5SXJsTXbVcunWmFW5cYlZu2S1xu2_4P7q37Bculquk3URqE5w</recordid><startdate>20171128</startdate><enddate>20171128</enddate><creator>Stasinos, P. I.</creator><creator>Simos, T. E.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20171128</creationdate><title>Symmetric embedded predictor–predictor–corrector (EPPCM) methods with vanished phase–lag and its derivatives for second order problems</title><author>Stasinos, P. I. ; Simos, T. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p253t-c5dc29943b1a5ed3c4b3286f7ab1e6ddce2a1d884f42021200595341790535323</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Boundary value problems</topic><topic>Derivatives</topic><topic>Finite difference method</topic><topic>Numerical methods</topic><topic>Phase lag</topic><topic>Predictor-corrector methods</topic><topic>Schrodinger equation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stasinos, P. I.</creatorcontrib><creatorcontrib>Simos, T. E.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stasinos, P. I.</au><au>Simos, T. E.</au><au>Simos, Theodore E.</au><au>Kalogiratou, Zacharoula</au><au>Monovasilis, Theodore</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Symmetric embedded predictor–predictor–corrector (EPPCM) methods with vanished phase–lag and its derivatives for second order problems</atitle><btitle>AIP conference proceedings</btitle><date>2017-11-28</date><risdate>2017</risdate><volume>1906</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>In this paper we describe the embedded predictor–predictor–corrector methods with two–stages of prediction and with vanished phase-lag and its derivatives. Since the methods described in this paper have two–stages of prediction, the symbol (EPPCM) is used. The first stage of the predictor of the new presented algorithm is based on the linear ten–step symmetric method of Quinlan–Tremaine [1]. We call the new scheme non–linear since has three–stages. We use the methods presented in this paper on the numerical solution of:
1.
initial–value problems (IVPs) with oscillatory solutions,
2.
boundary–value problems (IVPs) with oscillatory solutions,
3.
orbital problems
4.
the Schrödinger equation and related problems.
We note here, that the algorithms presented in this paper belong to the embedded methods. The numerical and theoretical results show the effectiveness of the new obtained embedded finite difference pairs.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5012499</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2017, Vol.1906 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_scitation_primary_10_1063_1_5012499 |
source | AIP Journals Complete |
subjects | Algorithms Boundary value problems Derivatives Finite difference method Numerical methods Phase lag Predictor-corrector methods Schrodinger equation |
title | Symmetric embedded predictor–predictor–corrector (EPPCM) methods with vanished phase–lag and its derivatives for second order problems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T14%3A50%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Symmetric%20embedded%20predictor%E2%80%93predictor%E2%80%93corrector%20(EPPCM)%20methods%20with%20vanished%20phase%E2%80%93lag%20and%20its%20derivatives%20for%20second%20order%20problems&rft.btitle=AIP%20conference%20proceedings&rft.au=Stasinos,%20P.%20I.&rft.date=2017-11-28&rft.volume=1906&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/1.5012499&rft_dat=%3Cproquest_scita%3E2116023609%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2116023609&rft_id=info:pmid/&rfr_iscdi=true |