Quantum theory of multiscale coarse-graining

Coarse-grained (CG) models serve as a powerful tool to simulate molecular systems at much longer temporal and spatial scales. Previously, CG models and methods have been built upon classical statistical mechanics. The present paper develops a theory and numerical methodology for coarse-graining in q...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2018-03, Vol.148 (10), p.102335-102335
Hauptverfasser: Han, Yining, Jin, Jaehyeok, Wagner, Jacob W., Voth, Gregory A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 102335
container_issue 10
container_start_page 102335
container_title The Journal of chemical physics
container_volume 148
creator Han, Yining
Jin, Jaehyeok
Wagner, Jacob W.
Voth, Gregory A.
description Coarse-grained (CG) models serve as a powerful tool to simulate molecular systems at much longer temporal and spatial scales. Previously, CG models and methods have been built upon classical statistical mechanics. The present paper develops a theory and numerical methodology for coarse-graining in quantum statistical mechanics, by generalizing the multiscale coarse-graining (MS-CG) method to quantum Boltzmann statistics. A rigorous derivation of the sufficient thermodynamic consistency condition is first presented via imaginary time Feynman path integrals. It identifies the optimal choice of CG action functional and effective quantum CG (qCG) force field to generate a quantum MS-CG (qMS-CG) description of the equilibrium system that is consistent with the quantum fine-grained model projected onto the CG variables. A variational principle then provides a class of algorithms for optimally approximating the qMS-CG force fields. Specifically, a variational method based on force matching, which was also adopted in the classical MS-CG theory, is generalized to quantum Boltzmann statistics. The qMS-CG numerical algorithms and practical issues in implementing this variational minimization procedure are also discussed. Then, two numerical examples are presented to demonstrate the method. Finally, as an alternative strategy, a quasi-classical approximation for the thermal density matrix expressed in the CG variables is derived. This approach provides an interesting physical picture for coarse-graining in quantum Boltzmann statistical mechanics in which the consistency with the quantum particle delocalization is obviously manifest, and it opens up an avenue for using path integral centroid-based effective classical force fields in a coarse-graining methodology.
doi_str_mv 10.1063/1.5010270
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_5010270</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2115806896</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-bd2b87ffd7acd6b117bbeaebe2e3ea01d502a9bb2e02a8e56d6697c3067cde093</originalsourceid><addsrcrecordid>eNp90M1KxDAUBeAgijOOLnwBKbhRseO9aZs0Sxn8gwERdF2S9Hbs0DaatIt5eyszunDh6mw-DofD2CnCHEEkNzjPAIFL2GNThFzFUijYZ1MAjrESICbsKIQ1AKDk6SGbcJWlaYJyyq5fBt31Qxv17-T8JnJV1A5NXwerG4qs0z5QvPK67upudcwOKt0EOtnljL3d370uHuPl88PT4nYZ2yTN-9iU3OSyqkqpbSkMojSGNBnilJAGLDPgWhnDacycMlEKoaRNQEhbEqhkxi62vR_efQ4U-qIdB1HT6I7cEAoOmKpUZgAjPf9D127w3biu4IhZDiJXYlSXW2W9C8FTVXz4utV-UyAU3xcWWOwuHO3ZrnEwLZW_8uezEVxtQbB1r_vadf-0fQGJKHd7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2115806896</pqid></control><display><type>article</type><title>Quantum theory of multiscale coarse-graining</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Han, Yining ; Jin, Jaehyeok ; Wagner, Jacob W. ; Voth, Gregory A.</creator><creatorcontrib>Han, Yining ; Jin, Jaehyeok ; Wagner, Jacob W. ; Voth, Gregory A.</creatorcontrib><description>Coarse-grained (CG) models serve as a powerful tool to simulate molecular systems at much longer temporal and spatial scales. Previously, CG models and methods have been built upon classical statistical mechanics. The present paper develops a theory and numerical methodology for coarse-graining in quantum statistical mechanics, by generalizing the multiscale coarse-graining (MS-CG) method to quantum Boltzmann statistics. A rigorous derivation of the sufficient thermodynamic consistency condition is first presented via imaginary time Feynman path integrals. It identifies the optimal choice of CG action functional and effective quantum CG (qCG) force field to generate a quantum MS-CG (qMS-CG) description of the equilibrium system that is consistent with the quantum fine-grained model projected onto the CG variables. A variational principle then provides a class of algorithms for optimally approximating the qMS-CG force fields. Specifically, a variational method based on force matching, which was also adopted in the classical MS-CG theory, is generalized to quantum Boltzmann statistics. The qMS-CG numerical algorithms and practical issues in implementing this variational minimization procedure are also discussed. Then, two numerical examples are presented to demonstrate the method. Finally, as an alternative strategy, a quasi-classical approximation for the thermal density matrix expressed in the CG variables is derived. This approach provides an interesting physical picture for coarse-graining in quantum Boltzmann statistical mechanics in which the consistency with the quantum particle delocalization is obviously manifest, and it opens up an avenue for using path integral centroid-based effective classical force fields in a coarse-graining methodology.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.5010270</identifier><identifier>PMID: 29544317</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Algorithms ; Computer simulation ; Consistency ; Granulation ; Integrals ; Mathematical models ; Multiscale analysis ; Optimization ; Quantum statistics ; Quantum theory ; Statistical mechanics</subject><ispartof>The Journal of chemical physics, 2018-03, Vol.148 (10), p.102335-102335</ispartof><rights>Author(s)</rights><rights>2018 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-bd2b87ffd7acd6b117bbeaebe2e3ea01d502a9bb2e02a8e56d6697c3067cde093</citedby><cites>FETCH-LOGICAL-c348t-bd2b87ffd7acd6b117bbeaebe2e3ea01d502a9bb2e02a8e56d6697c3067cde093</cites><orcidid>0000-0001-7194-1279 ; 0000-0002-3267-6748 ; 0000-0002-6577-2015 ; 0000000171941279 ; 0000000265772015 ; 0000000232676748</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/1.5010270$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4502,27915,27916,76145</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29544317$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Han, Yining</creatorcontrib><creatorcontrib>Jin, Jaehyeok</creatorcontrib><creatorcontrib>Wagner, Jacob W.</creatorcontrib><creatorcontrib>Voth, Gregory A.</creatorcontrib><title>Quantum theory of multiscale coarse-graining</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>Coarse-grained (CG) models serve as a powerful tool to simulate molecular systems at much longer temporal and spatial scales. Previously, CG models and methods have been built upon classical statistical mechanics. The present paper develops a theory and numerical methodology for coarse-graining in quantum statistical mechanics, by generalizing the multiscale coarse-graining (MS-CG) method to quantum Boltzmann statistics. A rigorous derivation of the sufficient thermodynamic consistency condition is first presented via imaginary time Feynman path integrals. It identifies the optimal choice of CG action functional and effective quantum CG (qCG) force field to generate a quantum MS-CG (qMS-CG) description of the equilibrium system that is consistent with the quantum fine-grained model projected onto the CG variables. A variational principle then provides a class of algorithms for optimally approximating the qMS-CG force fields. Specifically, a variational method based on force matching, which was also adopted in the classical MS-CG theory, is generalized to quantum Boltzmann statistics. The qMS-CG numerical algorithms and practical issues in implementing this variational minimization procedure are also discussed. Then, two numerical examples are presented to demonstrate the method. Finally, as an alternative strategy, a quasi-classical approximation for the thermal density matrix expressed in the CG variables is derived. This approach provides an interesting physical picture for coarse-graining in quantum Boltzmann statistical mechanics in which the consistency with the quantum particle delocalization is obviously manifest, and it opens up an avenue for using path integral centroid-based effective classical force fields in a coarse-graining methodology.</description><subject>Algorithms</subject><subject>Computer simulation</subject><subject>Consistency</subject><subject>Granulation</subject><subject>Integrals</subject><subject>Mathematical models</subject><subject>Multiscale analysis</subject><subject>Optimization</subject><subject>Quantum statistics</subject><subject>Quantum theory</subject><subject>Statistical mechanics</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp90M1KxDAUBeAgijOOLnwBKbhRseO9aZs0Sxn8gwERdF2S9Hbs0DaatIt5eyszunDh6mw-DofD2CnCHEEkNzjPAIFL2GNThFzFUijYZ1MAjrESICbsKIQ1AKDk6SGbcJWlaYJyyq5fBt31Qxv17-T8JnJV1A5NXwerG4qs0z5QvPK67upudcwOKt0EOtnljL3d370uHuPl88PT4nYZ2yTN-9iU3OSyqkqpbSkMojSGNBnilJAGLDPgWhnDacycMlEKoaRNQEhbEqhkxi62vR_efQ4U-qIdB1HT6I7cEAoOmKpUZgAjPf9D127w3biu4IhZDiJXYlSXW2W9C8FTVXz4utV-UyAU3xcWWOwuHO3ZrnEwLZW_8uezEVxtQbB1r_vadf-0fQGJKHd7</recordid><startdate>20180314</startdate><enddate>20180314</enddate><creator>Han, Yining</creator><creator>Jin, Jaehyeok</creator><creator>Wagner, Jacob W.</creator><creator>Voth, Gregory A.</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7194-1279</orcidid><orcidid>https://orcid.org/0000-0002-3267-6748</orcidid><orcidid>https://orcid.org/0000-0002-6577-2015</orcidid><orcidid>https://orcid.org/0000000171941279</orcidid><orcidid>https://orcid.org/0000000265772015</orcidid><orcidid>https://orcid.org/0000000232676748</orcidid></search><sort><creationdate>20180314</creationdate><title>Quantum theory of multiscale coarse-graining</title><author>Han, Yining ; Jin, Jaehyeok ; Wagner, Jacob W. ; Voth, Gregory A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-bd2b87ffd7acd6b117bbeaebe2e3ea01d502a9bb2e02a8e56d6697c3067cde093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Computer simulation</topic><topic>Consistency</topic><topic>Granulation</topic><topic>Integrals</topic><topic>Mathematical models</topic><topic>Multiscale analysis</topic><topic>Optimization</topic><topic>Quantum statistics</topic><topic>Quantum theory</topic><topic>Statistical mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Yining</creatorcontrib><creatorcontrib>Jin, Jaehyeok</creatorcontrib><creatorcontrib>Wagner, Jacob W.</creatorcontrib><creatorcontrib>Voth, Gregory A.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Yining</au><au>Jin, Jaehyeok</au><au>Wagner, Jacob W.</au><au>Voth, Gregory A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum theory of multiscale coarse-graining</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2018-03-14</date><risdate>2018</risdate><volume>148</volume><issue>10</issue><spage>102335</spage><epage>102335</epage><pages>102335-102335</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>Coarse-grained (CG) models serve as a powerful tool to simulate molecular systems at much longer temporal and spatial scales. Previously, CG models and methods have been built upon classical statistical mechanics. The present paper develops a theory and numerical methodology for coarse-graining in quantum statistical mechanics, by generalizing the multiscale coarse-graining (MS-CG) method to quantum Boltzmann statistics. A rigorous derivation of the sufficient thermodynamic consistency condition is first presented via imaginary time Feynman path integrals. It identifies the optimal choice of CG action functional and effective quantum CG (qCG) force field to generate a quantum MS-CG (qMS-CG) description of the equilibrium system that is consistent with the quantum fine-grained model projected onto the CG variables. A variational principle then provides a class of algorithms for optimally approximating the qMS-CG force fields. Specifically, a variational method based on force matching, which was also adopted in the classical MS-CG theory, is generalized to quantum Boltzmann statistics. The qMS-CG numerical algorithms and practical issues in implementing this variational minimization procedure are also discussed. Then, two numerical examples are presented to demonstrate the method. Finally, as an alternative strategy, a quasi-classical approximation for the thermal density matrix expressed in the CG variables is derived. This approach provides an interesting physical picture for coarse-graining in quantum Boltzmann statistical mechanics in which the consistency with the quantum particle delocalization is obviously manifest, and it opens up an avenue for using path integral centroid-based effective classical force fields in a coarse-graining methodology.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>29544317</pmid><doi>10.1063/1.5010270</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-7194-1279</orcidid><orcidid>https://orcid.org/0000-0002-3267-6748</orcidid><orcidid>https://orcid.org/0000-0002-6577-2015</orcidid><orcidid>https://orcid.org/0000000171941279</orcidid><orcidid>https://orcid.org/0000000265772015</orcidid><orcidid>https://orcid.org/0000000232676748</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2018-03, Vol.148 (10), p.102335-102335
issn 0021-9606
1089-7690
language eng
recordid cdi_scitation_primary_10_1063_1_5010270
source AIP Journals Complete; Alma/SFX Local Collection
subjects Algorithms
Computer simulation
Consistency
Granulation
Integrals
Mathematical models
Multiscale analysis
Optimization
Quantum statistics
Quantum theory
Statistical mechanics
title Quantum theory of multiscale coarse-graining
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T23%3A22%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20theory%20of%20multiscale%20coarse-graining&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Han,%20Yining&rft.date=2018-03-14&rft.volume=148&rft.issue=10&rft.spage=102335&rft.epage=102335&rft.pages=102335-102335&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/1.5010270&rft_dat=%3Cproquest_scita%3E2115806896%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2115806896&rft_id=info:pmid/29544317&rfr_iscdi=true