Nanoscale spatial analysis of clay minerals containing cesium by synchrotron radiation photoemission electron microscopy

A synchrotron radiation photoemission electron microscope (SR-PEEM) was applied to demonstrate the pinpoint analysis of micrometer-sized weathered biotite clay particles with artificially adsorbed cesium (Cs) atoms. Despite the insulating properties of the clay, we observed the spatial distributions...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2018-01, Vol.112 (2)
Hauptverfasser: Yoshigoe, Akitaka, Shiwaku, Hideaki, Kobayashi, Toru, Shimoyama, Iwao, Matsumura, Daiju, Tsuji, Takuya, Nishihata, Yasuo, Kogure, Toshihiro, Ohkochi, Takuo, Yasui, Akira, Yaita, Tsuyoshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title Applied physics letters
container_volume 112
creator Yoshigoe, Akitaka
Shiwaku, Hideaki
Kobayashi, Toru
Shimoyama, Iwao
Matsumura, Daiju
Tsuji, Takuya
Nishihata, Yasuo
Kogure, Toshihiro
Ohkochi, Takuo
Yasui, Akira
Yaita, Tsuyoshi
description A synchrotron radiation photoemission electron microscope (SR-PEEM) was applied to demonstrate the pinpoint analysis of micrometer-sized weathered biotite clay particles with artificially adsorbed cesium (Cs) atoms. Despite the insulating properties of the clay, we observed the spatial distributions of constituent elements (Si, Al, Cs, Mg, and Fe) without charging issues and clarified reciprocal site-correlations among these elements with nanometer resolution. We found that Cs atoms were likely to be adsorbed evenly over the entire particle; however, we identified an occupational conflict between Cs and Mg atoms, implying that Cs sorption involves ion exchange processes. Spatially resolved X-ray absorption spectra (XAS) of the Cs4,5 M-edge region showed Cs to be present in a monocation state (Cs+) as typically observed for Cs compounds. Further pinpoint XAS measurements were also performed at the Fe L2,3-edge to determine the chemical valence of the Fe atoms. The shapes of the spectra were similar to those for Fe2O3, indicating that Fe in the clay was in a 3+ oxidation state. From these observations, we infer that charge compensation facilitates Cs adsorption in the vicinity of a substitution site where Si4+ ions are replaced by Fe3+ ions in SiO4 tetrahedral sheets. Our results demonstrate the utility of SR-PEEM as a tool for spatially resolved chemical analyses of various environmental substances, which is not limited by the poor conductivity of samples.
doi_str_mv 10.1063/1.5005799
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_5005799</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2115810845</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-d678a08b975ed8bbda12ecf85be6806aefffd932868bdd6861eeb2e2b45b3ef93</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI4u_AcBVwodk2bSpksZfMGgG12XPG6cDG1Tk47Yf29mRnQhuLr3wMe59xyEzimZUVKwazrjhPCyqg7QhJKyzBil4hBNCCEsKypOj9FJjOskec7YBH0-yc5HLRvAsZeDkw2WnWzG6CL2FutGjrh1HQTZRKx9N0jXue4Na4hu02I14jh2ehX8EHyHgzQumaStX_nBQ-ti3CpoQO-A1umQzvl-PEVHNnnC2fecote725fFQ7Z8vn9c3CwzzSo2ZKYohSRCVSUHI5QykuagreAKCkEKCdZaU7FcFEIZU4iCAqgccjXnioGt2BRd7H374N83EId67TchRYx1TikXlIg5T9Tlntq-FwPYug-ulWGsKam3xda0_i42sVd7Nmo37NL-wB8-_IJ1b-x_8F_nL5FyizA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2115810845</pqid></control><display><type>article</type><title>Nanoscale spatial analysis of clay minerals containing cesium by synchrotron radiation photoemission electron microscopy</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Yoshigoe, Akitaka ; Shiwaku, Hideaki ; Kobayashi, Toru ; Shimoyama, Iwao ; Matsumura, Daiju ; Tsuji, Takuya ; Nishihata, Yasuo ; Kogure, Toshihiro ; Ohkochi, Takuo ; Yasui, Akira ; Yaita, Tsuyoshi</creator><creatorcontrib>Yoshigoe, Akitaka ; Shiwaku, Hideaki ; Kobayashi, Toru ; Shimoyama, Iwao ; Matsumura, Daiju ; Tsuji, Takuya ; Nishihata, Yasuo ; Kogure, Toshihiro ; Ohkochi, Takuo ; Yasui, Akira ; Yaita, Tsuyoshi</creatorcontrib><description>A synchrotron radiation photoemission electron microscope (SR-PEEM) was applied to demonstrate the pinpoint analysis of micrometer-sized weathered biotite clay particles with artificially adsorbed cesium (Cs) atoms. Despite the insulating properties of the clay, we observed the spatial distributions of constituent elements (Si, Al, Cs, Mg, and Fe) without charging issues and clarified reciprocal site-correlations among these elements with nanometer resolution. We found that Cs atoms were likely to be adsorbed evenly over the entire particle; however, we identified an occupational conflict between Cs and Mg atoms, implying that Cs sorption involves ion exchange processes. Spatially resolved X-ray absorption spectra (XAS) of the Cs4,5 M-edge region showed Cs to be present in a monocation state (Cs+) as typically observed for Cs compounds. Further pinpoint XAS measurements were also performed at the Fe L2,3-edge to determine the chemical valence of the Fe atoms. The shapes of the spectra were similar to those for Fe2O3, indicating that Fe in the clay was in a 3+ oxidation state. From these observations, we infer that charge compensation facilitates Cs adsorption in the vicinity of a substitution site where Si4+ ions are replaced by Fe3+ ions in SiO4 tetrahedral sheets. Our results demonstrate the utility of SR-PEEM as a tool for spatially resolved chemical analyses of various environmental substances, which is not limited by the poor conductivity of samples.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.5005799</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Absorption spectra ; Aluminum ; Applied physics ; Biotite ; Cesium ; Clay ; Clay minerals ; Ion exchange ; Iron ; Organic chemistry ; Oxidation ; Photoelectric emission ; Silicon ; Spatial analysis ; Synchrotron radiation ; Valence</subject><ispartof>Applied physics letters, 2018-01, Vol.112 (2)</ispartof><rights>Author(s)</rights><rights>2018 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-d678a08b975ed8bbda12ecf85be6806aefffd932868bdd6861eeb2e2b45b3ef93</citedby><cites>FETCH-LOGICAL-c393t-d678a08b975ed8bbda12ecf85be6806aefffd932868bdd6861eeb2e2b45b3ef93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/1.5005799$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>315,781,785,795,4513,27929,27930,76389</link.rule.ids></links><search><creatorcontrib>Yoshigoe, Akitaka</creatorcontrib><creatorcontrib>Shiwaku, Hideaki</creatorcontrib><creatorcontrib>Kobayashi, Toru</creatorcontrib><creatorcontrib>Shimoyama, Iwao</creatorcontrib><creatorcontrib>Matsumura, Daiju</creatorcontrib><creatorcontrib>Tsuji, Takuya</creatorcontrib><creatorcontrib>Nishihata, Yasuo</creatorcontrib><creatorcontrib>Kogure, Toshihiro</creatorcontrib><creatorcontrib>Ohkochi, Takuo</creatorcontrib><creatorcontrib>Yasui, Akira</creatorcontrib><creatorcontrib>Yaita, Tsuyoshi</creatorcontrib><title>Nanoscale spatial analysis of clay minerals containing cesium by synchrotron radiation photoemission electron microscopy</title><title>Applied physics letters</title><description>A synchrotron radiation photoemission electron microscope (SR-PEEM) was applied to demonstrate the pinpoint analysis of micrometer-sized weathered biotite clay particles with artificially adsorbed cesium (Cs) atoms. Despite the insulating properties of the clay, we observed the spatial distributions of constituent elements (Si, Al, Cs, Mg, and Fe) without charging issues and clarified reciprocal site-correlations among these elements with nanometer resolution. We found that Cs atoms were likely to be adsorbed evenly over the entire particle; however, we identified an occupational conflict between Cs and Mg atoms, implying that Cs sorption involves ion exchange processes. Spatially resolved X-ray absorption spectra (XAS) of the Cs4,5 M-edge region showed Cs to be present in a monocation state (Cs+) as typically observed for Cs compounds. Further pinpoint XAS measurements were also performed at the Fe L2,3-edge to determine the chemical valence of the Fe atoms. The shapes of the spectra were similar to those for Fe2O3, indicating that Fe in the clay was in a 3+ oxidation state. From these observations, we infer that charge compensation facilitates Cs adsorption in the vicinity of a substitution site where Si4+ ions are replaced by Fe3+ ions in SiO4 tetrahedral sheets. Our results demonstrate the utility of SR-PEEM as a tool for spatially resolved chemical analyses of various environmental substances, which is not limited by the poor conductivity of samples.</description><subject>Absorption spectra</subject><subject>Aluminum</subject><subject>Applied physics</subject><subject>Biotite</subject><subject>Cesium</subject><subject>Clay</subject><subject>Clay minerals</subject><subject>Ion exchange</subject><subject>Iron</subject><subject>Organic chemistry</subject><subject>Oxidation</subject><subject>Photoelectric emission</subject><subject>Silicon</subject><subject>Spatial analysis</subject><subject>Synchrotron radiation</subject><subject>Valence</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOI4u_AcBVwodk2bSpksZfMGgG12XPG6cDG1Tk47Yf29mRnQhuLr3wMe59xyEzimZUVKwazrjhPCyqg7QhJKyzBil4hBNCCEsKypOj9FJjOskec7YBH0-yc5HLRvAsZeDkw2WnWzG6CL2FutGjrh1HQTZRKx9N0jXue4Na4hu02I14jh2ehX8EHyHgzQumaStX_nBQ-ti3CpoQO-A1umQzvl-PEVHNnnC2fecote725fFQ7Z8vn9c3CwzzSo2ZKYohSRCVSUHI5QykuagreAKCkEKCdZaU7FcFEIZU4iCAqgccjXnioGt2BRd7H374N83EId67TchRYx1TikXlIg5T9Tlntq-FwPYug-ulWGsKam3xda0_i42sVd7Nmo37NL-wB8-_IJ1b-x_8F_nL5FyizA</recordid><startdate>20180108</startdate><enddate>20180108</enddate><creator>Yoshigoe, Akitaka</creator><creator>Shiwaku, Hideaki</creator><creator>Kobayashi, Toru</creator><creator>Shimoyama, Iwao</creator><creator>Matsumura, Daiju</creator><creator>Tsuji, Takuya</creator><creator>Nishihata, Yasuo</creator><creator>Kogure, Toshihiro</creator><creator>Ohkochi, Takuo</creator><creator>Yasui, Akira</creator><creator>Yaita, Tsuyoshi</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20180108</creationdate><title>Nanoscale spatial analysis of clay minerals containing cesium by synchrotron radiation photoemission electron microscopy</title><author>Yoshigoe, Akitaka ; Shiwaku, Hideaki ; Kobayashi, Toru ; Shimoyama, Iwao ; Matsumura, Daiju ; Tsuji, Takuya ; Nishihata, Yasuo ; Kogure, Toshihiro ; Ohkochi, Takuo ; Yasui, Akira ; Yaita, Tsuyoshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-d678a08b975ed8bbda12ecf85be6806aefffd932868bdd6861eeb2e2b45b3ef93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Absorption spectra</topic><topic>Aluminum</topic><topic>Applied physics</topic><topic>Biotite</topic><topic>Cesium</topic><topic>Clay</topic><topic>Clay minerals</topic><topic>Ion exchange</topic><topic>Iron</topic><topic>Organic chemistry</topic><topic>Oxidation</topic><topic>Photoelectric emission</topic><topic>Silicon</topic><topic>Spatial analysis</topic><topic>Synchrotron radiation</topic><topic>Valence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yoshigoe, Akitaka</creatorcontrib><creatorcontrib>Shiwaku, Hideaki</creatorcontrib><creatorcontrib>Kobayashi, Toru</creatorcontrib><creatorcontrib>Shimoyama, Iwao</creatorcontrib><creatorcontrib>Matsumura, Daiju</creatorcontrib><creatorcontrib>Tsuji, Takuya</creatorcontrib><creatorcontrib>Nishihata, Yasuo</creatorcontrib><creatorcontrib>Kogure, Toshihiro</creatorcontrib><creatorcontrib>Ohkochi, Takuo</creatorcontrib><creatorcontrib>Yasui, Akira</creatorcontrib><creatorcontrib>Yaita, Tsuyoshi</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yoshigoe, Akitaka</au><au>Shiwaku, Hideaki</au><au>Kobayashi, Toru</au><au>Shimoyama, Iwao</au><au>Matsumura, Daiju</au><au>Tsuji, Takuya</au><au>Nishihata, Yasuo</au><au>Kogure, Toshihiro</au><au>Ohkochi, Takuo</au><au>Yasui, Akira</au><au>Yaita, Tsuyoshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanoscale spatial analysis of clay minerals containing cesium by synchrotron radiation photoemission electron microscopy</atitle><jtitle>Applied physics letters</jtitle><date>2018-01-08</date><risdate>2018</risdate><volume>112</volume><issue>2</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>A synchrotron radiation photoemission electron microscope (SR-PEEM) was applied to demonstrate the pinpoint analysis of micrometer-sized weathered biotite clay particles with artificially adsorbed cesium (Cs) atoms. Despite the insulating properties of the clay, we observed the spatial distributions of constituent elements (Si, Al, Cs, Mg, and Fe) without charging issues and clarified reciprocal site-correlations among these elements with nanometer resolution. We found that Cs atoms were likely to be adsorbed evenly over the entire particle; however, we identified an occupational conflict between Cs and Mg atoms, implying that Cs sorption involves ion exchange processes. Spatially resolved X-ray absorption spectra (XAS) of the Cs4,5 M-edge region showed Cs to be present in a monocation state (Cs+) as typically observed for Cs compounds. Further pinpoint XAS measurements were also performed at the Fe L2,3-edge to determine the chemical valence of the Fe atoms. The shapes of the spectra were similar to those for Fe2O3, indicating that Fe in the clay was in a 3+ oxidation state. From these observations, we infer that charge compensation facilitates Cs adsorption in the vicinity of a substitution site where Si4+ ions are replaced by Fe3+ ions in SiO4 tetrahedral sheets. Our results demonstrate the utility of SR-PEEM as a tool for spatially resolved chemical analyses of various environmental substances, which is not limited by the poor conductivity of samples.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5005799</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2018-01, Vol.112 (2)
issn 0003-6951
1077-3118
language eng
recordid cdi_scitation_primary_10_1063_1_5005799
source AIP Journals Complete; Alma/SFX Local Collection
subjects Absorption spectra
Aluminum
Applied physics
Biotite
Cesium
Clay
Clay minerals
Ion exchange
Iron
Organic chemistry
Oxidation
Photoelectric emission
Silicon
Spatial analysis
Synchrotron radiation
Valence
title Nanoscale spatial analysis of clay minerals containing cesium by synchrotron radiation photoemission electron microscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T07%3A07%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanoscale%20spatial%20analysis%20of%20clay%20minerals%20containing%20cesium%20by%20synchrotron%20radiation%20photoemission%20electron%20microscopy&rft.jtitle=Applied%20physics%20letters&rft.au=Yoshigoe,%20Akitaka&rft.date=2018-01-08&rft.volume=112&rft.issue=2&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/1.5005799&rft_dat=%3Cproquest_scita%3E2115810845%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2115810845&rft_id=info:pmid/&rfr_iscdi=true