Invariants of velocity gradient tensor in supersonic turbulent pipe, nozzle, and diffuser flows

Velocity gradient tensor (VGT) analysis of high-order accurate direct numerical simulation data of supersonic pipe, nozzle, and diffuser flows at computationally moderate Reynolds numbers is performed. Joint probability density functions of second and third invariants of the VGT conditioned on posit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of fluids (1994) 2018-01, Vol.30 (1)
Hauptverfasser: Kumari, Komal, Mahapatra, Susila, Ghosh, Somnath, Mathew, Joseph
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Physics of fluids (1994)
container_volume 30
creator Kumari, Komal
Mahapatra, Susila
Ghosh, Somnath
Mathew, Joseph
description Velocity gradient tensor (VGT) analysis of high-order accurate direct numerical simulation data of supersonic pipe, nozzle, and diffuser flows at computationally moderate Reynolds numbers is performed. Joint probability density functions of second and third invariants of the VGT conditioned on positive and negative dilatation levels are presented in the near-wall viscous layer, buffer layer, log layer, and core region of these flows. For flow regions with positive dilatation, there is a preference for unstable flow topologies, while regions with negative dilatation show a preference for stable flow topologies.
doi_str_mv 10.1063/1.5004468
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_5004468</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2115809822</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-eba0f11c645c25598c556446597e7098c8bb0f4ff313b25fb72cadd94bdd0373</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKsL_0HAleLUJDPJzCxFfBQKbroPeUrKmIxJptL-elPatatzL_fjXM4B4BajBUasfsILilDTsO4MzDDq-qpljJ0f5hZVjNX4ElyltEEI1T1hM8CXfiuiEz4nGCzcmiEol3fwKwrtjM8wG59ChM7DNI0mpuCdgnmKchoO59GN5hH6sN8PRYXXUDtrp2QitEP4TdfgwoohmZuTzsH67XX98lGtPt-XL8-rSpGe5MpIgSzGijVUEUr7TlHKSgzat6ZFZe2kRLaxtsa1JNTKliihdd9IrVHd1nNwd7QdY_iZTMp8E6boy0dOMKZdsSCkUPdHSsWQUjSWj9F9i7jjGPFDfRzzU32FfTiyqfQhsgv-H_gPUtFwJg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2115809822</pqid></control><display><type>article</type><title>Invariants of velocity gradient tensor in supersonic turbulent pipe, nozzle, and diffuser flows</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Kumari, Komal ; Mahapatra, Susila ; Ghosh, Somnath ; Mathew, Joseph</creator><creatorcontrib>Kumari, Komal ; Mahapatra, Susila ; Ghosh, Somnath ; Mathew, Joseph</creatorcontrib><description>Velocity gradient tensor (VGT) analysis of high-order accurate direct numerical simulation data of supersonic pipe, nozzle, and diffuser flows at computationally moderate Reynolds numbers is performed. Joint probability density functions of second and third invariants of the VGT conditioned on positive and negative dilatation levels are presented in the near-wall viscous layer, buffer layer, log layer, and core region of these flows. For flow regions with positive dilatation, there is a preference for unstable flow topologies, while regions with negative dilatation show a preference for stable flow topologies.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/1.5004468</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Buffer layers ; Computational fluid dynamics ; Computer simulation ; Conditioning ; Diffusers ; Direct numerical simulation ; Fluid dynamics ; Invariants ; Nozzles ; Physics ; Pipes ; Probability density functions ; Stretching ; Topology ; Velocity gradient</subject><ispartof>Physics of fluids (1994), 2018-01, Vol.30 (1)</ispartof><rights>Author(s)</rights><rights>2018 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-eba0f11c645c25598c556446597e7098c8bb0f4ff313b25fb72cadd94bdd0373</citedby><cites>FETCH-LOGICAL-c292t-eba0f11c645c25598c556446597e7098c8bb0f4ff313b25fb72cadd94bdd0373</cites><orcidid>0000-0002-0887-9641</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,794,4510,27923,27924</link.rule.ids></links><search><creatorcontrib>Kumari, Komal</creatorcontrib><creatorcontrib>Mahapatra, Susila</creatorcontrib><creatorcontrib>Ghosh, Somnath</creatorcontrib><creatorcontrib>Mathew, Joseph</creatorcontrib><title>Invariants of velocity gradient tensor in supersonic turbulent pipe, nozzle, and diffuser flows</title><title>Physics of fluids (1994)</title><description>Velocity gradient tensor (VGT) analysis of high-order accurate direct numerical simulation data of supersonic pipe, nozzle, and diffuser flows at computationally moderate Reynolds numbers is performed. Joint probability density functions of second and third invariants of the VGT conditioned on positive and negative dilatation levels are presented in the near-wall viscous layer, buffer layer, log layer, and core region of these flows. For flow regions with positive dilatation, there is a preference for unstable flow topologies, while regions with negative dilatation show a preference for stable flow topologies.</description><subject>Buffer layers</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Conditioning</subject><subject>Diffusers</subject><subject>Direct numerical simulation</subject><subject>Fluid dynamics</subject><subject>Invariants</subject><subject>Nozzles</subject><subject>Physics</subject><subject>Pipes</subject><subject>Probability density functions</subject><subject>Stretching</subject><subject>Topology</subject><subject>Velocity gradient</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKsL_0HAleLUJDPJzCxFfBQKbroPeUrKmIxJptL-elPatatzL_fjXM4B4BajBUasfsILilDTsO4MzDDq-qpljJ0f5hZVjNX4ElyltEEI1T1hM8CXfiuiEz4nGCzcmiEol3fwKwrtjM8wG59ChM7DNI0mpuCdgnmKchoO59GN5hH6sN8PRYXXUDtrp2QitEP4TdfgwoohmZuTzsH67XX98lGtPt-XL8-rSpGe5MpIgSzGijVUEUr7TlHKSgzat6ZFZe2kRLaxtsa1JNTKliihdd9IrVHd1nNwd7QdY_iZTMp8E6boy0dOMKZdsSCkUPdHSsWQUjSWj9F9i7jjGPFDfRzzU32FfTiyqfQhsgv-H_gPUtFwJg</recordid><startdate>201801</startdate><enddate>201801</enddate><creator>Kumari, Komal</creator><creator>Mahapatra, Susila</creator><creator>Ghosh, Somnath</creator><creator>Mathew, Joseph</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0887-9641</orcidid></search><sort><creationdate>201801</creationdate><title>Invariants of velocity gradient tensor in supersonic turbulent pipe, nozzle, and diffuser flows</title><author>Kumari, Komal ; Mahapatra, Susila ; Ghosh, Somnath ; Mathew, Joseph</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-eba0f11c645c25598c556446597e7098c8bb0f4ff313b25fb72cadd94bdd0373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Buffer layers</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Conditioning</topic><topic>Diffusers</topic><topic>Direct numerical simulation</topic><topic>Fluid dynamics</topic><topic>Invariants</topic><topic>Nozzles</topic><topic>Physics</topic><topic>Pipes</topic><topic>Probability density functions</topic><topic>Stretching</topic><topic>Topology</topic><topic>Velocity gradient</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumari, Komal</creatorcontrib><creatorcontrib>Mahapatra, Susila</creatorcontrib><creatorcontrib>Ghosh, Somnath</creatorcontrib><creatorcontrib>Mathew, Joseph</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumari, Komal</au><au>Mahapatra, Susila</au><au>Ghosh, Somnath</au><au>Mathew, Joseph</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Invariants of velocity gradient tensor in supersonic turbulent pipe, nozzle, and diffuser flows</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2018-01</date><risdate>2018</risdate><volume>30</volume><issue>1</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>Velocity gradient tensor (VGT) analysis of high-order accurate direct numerical simulation data of supersonic pipe, nozzle, and diffuser flows at computationally moderate Reynolds numbers is performed. Joint probability density functions of second and third invariants of the VGT conditioned on positive and negative dilatation levels are presented in the near-wall viscous layer, buffer layer, log layer, and core region of these flows. For flow regions with positive dilatation, there is a preference for unstable flow topologies, while regions with negative dilatation show a preference for stable flow topologies.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5004468</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-0887-9641</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1070-6631
ispartof Physics of fluids (1994), 2018-01, Vol.30 (1)
issn 1070-6631
1089-7666
language eng
recordid cdi_scitation_primary_10_1063_1_5004468
source AIP Journals Complete; Alma/SFX Local Collection
subjects Buffer layers
Computational fluid dynamics
Computer simulation
Conditioning
Diffusers
Direct numerical simulation
Fluid dynamics
Invariants
Nozzles
Physics
Pipes
Probability density functions
Stretching
Topology
Velocity gradient
title Invariants of velocity gradient tensor in supersonic turbulent pipe, nozzle, and diffuser flows
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T06%3A55%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Invariants%20of%20velocity%20gradient%20tensor%20in%20supersonic%20turbulent%20pipe,%20nozzle,%20and%20diffuser%20flows&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Kumari,%20Komal&rft.date=2018-01&rft.volume=30&rft.issue=1&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/1.5004468&rft_dat=%3Cproquest_scita%3E2115809822%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2115809822&rft_id=info:pmid/&rfr_iscdi=true