Accessing the dark exciton spin in deterministic quantum-dot microlenses

The dark exciton state in semiconductor quantum dots (QDs) constitutes a long-lived solid-state qubit which has the potential to play an important role in implementations of solid-state-based quantum information architectures. In this work, we exploit deterministically fabricated QD microlenses whic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:APL photonics 2017-12, Vol.2 (12), p.121303-121303-7
Hauptverfasser: Heindel, Tobias, Thoma, Alexander, Schwartz, Ido, Schmidgall, Emma R., Gantz, Liron, Cogan, Dan, Strauß, Max, Schnauber, Peter, Gschrey, Manuel, Schulze, Jan-Hindrik, Strittmatter, Andre, Rodt, Sven, Gershoni, David, Reitzenstein, Stephan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 121303-7
container_issue 12
container_start_page 121303
container_title APL photonics
container_volume 2
creator Heindel, Tobias
Thoma, Alexander
Schwartz, Ido
Schmidgall, Emma R.
Gantz, Liron
Cogan, Dan
Strauß, Max
Schnauber, Peter
Gschrey, Manuel
Schulze, Jan-Hindrik
Strittmatter, Andre
Rodt, Sven
Gershoni, David
Reitzenstein, Stephan
description The dark exciton state in semiconductor quantum dots (QDs) constitutes a long-lived solid-state qubit which has the potential to play an important role in implementations of solid-state-based quantum information architectures. In this work, we exploit deterministically fabricated QD microlenses which promise enhanced photon extraction, to optically prepare and read out the dark exciton spin and observe its coherent precession. The optical access to the dark exciton is provided via spin-blockaded metastable biexciton states acting as heralding states, which are identified by deploying polarization-sensitive spectroscopy as well as time-resolved photon cross-correlation experiments. Our experiments reveal a spin-precession period of the dark exciton of (0.82 ± 0.01) ns corresponding to a fine-structure splitting of (5.0 ± 0.7) μeV between its eigenstates ↑ ⇑ ± ↓ ⇓ . By exploiting microlenses deterministically fabricated above pre-selected QDs, our work demonstrates the possibility to scale up implementations of quantum information processing schemes using the QD-confined dark exciton spin qubit, such as the generation of photonic cluster states or the realization of a solid-state-based quantum memory.
doi_str_mv 10.1063/1.5004147
format Article
fullrecord <record><control><sourceid>scitation_doaj_</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_5004147</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_bbc35c4fdc8547b682f21c9439d37276</doaj_id><sourcerecordid>app</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-9f4246c96b254673a4ed9a2d64a81760598f9d01030619804fe19b8b9c7e335d3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWGoP_oNcFbYmm6_NsRS1hYIXPYdsPmpqd1OTFPTfu7pFPAkDMwwvDzMPANcYzTHi5A7PGUIUU3EGJjURTYUkF-d_5kswy3mHEMJcYEnZBKwWxricQ7-F5dVBq9MbdB8mlNjDfAg9HMq64lIX-pBLMPD9qPty7CobC-yCSXHv-uzyFbjwep_d7NSn4OXh_nm5qjZPj-vlYlMZSnCppKc15UbytmaUC6Kps1LXllPdYMERk42XFmFEEMeyQdQ7LNumlUY4QpglU7AeuTbqnTqk0On0qaIO6mcR01bpNNy5d6ptDWGGemsaRkXLm9rX2EhKpCWiFnxg3Yys4Yuck_O_PIzUt1GF1cnokL0ds3mQo0uI_T_hL165dCM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Accessing the dark exciton spin in deterministic quantum-dot microlenses</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Heindel, Tobias ; Thoma, Alexander ; Schwartz, Ido ; Schmidgall, Emma R. ; Gantz, Liron ; Cogan, Dan ; Strauß, Max ; Schnauber, Peter ; Gschrey, Manuel ; Schulze, Jan-Hindrik ; Strittmatter, Andre ; Rodt, Sven ; Gershoni, David ; Reitzenstein, Stephan</creator><creatorcontrib>Heindel, Tobias ; Thoma, Alexander ; Schwartz, Ido ; Schmidgall, Emma R. ; Gantz, Liron ; Cogan, Dan ; Strauß, Max ; Schnauber, Peter ; Gschrey, Manuel ; Schulze, Jan-Hindrik ; Strittmatter, Andre ; Rodt, Sven ; Gershoni, David ; Reitzenstein, Stephan</creatorcontrib><description>The dark exciton state in semiconductor quantum dots (QDs) constitutes a long-lived solid-state qubit which has the potential to play an important role in implementations of solid-state-based quantum information architectures. In this work, we exploit deterministically fabricated QD microlenses which promise enhanced photon extraction, to optically prepare and read out the dark exciton spin and observe its coherent precession. The optical access to the dark exciton is provided via spin-blockaded metastable biexciton states acting as heralding states, which are identified by deploying polarization-sensitive spectroscopy as well as time-resolved photon cross-correlation experiments. Our experiments reveal a spin-precession period of the dark exciton of (0.82 ± 0.01) ns corresponding to a fine-structure splitting of (5.0 ± 0.7) μeV between its eigenstates ↑ ⇑ ± ↓ ⇓ . By exploiting microlenses deterministically fabricated above pre-selected QDs, our work demonstrates the possibility to scale up implementations of quantum information processing schemes using the QD-confined dark exciton spin qubit, such as the generation of photonic cluster states or the realization of a solid-state-based quantum memory.</description><identifier>ISSN: 2378-0967</identifier><identifier>EISSN: 2378-0967</identifier><identifier>DOI: 10.1063/1.5004147</identifier><identifier>CODEN: APPHD2</identifier><language>eng</language><publisher>AIP Publishing LLC</publisher><ispartof>APL photonics, 2017-12, Vol.2 (12), p.121303-121303-7</ispartof><rights>Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c431t-9f4246c96b254673a4ed9a2d64a81760598f9d01030619804fe19b8b9c7e335d3</citedby><cites>FETCH-LOGICAL-c431t-9f4246c96b254673a4ed9a2d64a81760598f9d01030619804fe19b8b9c7e335d3</cites><orcidid>0000-0003-1148-404X ; 0000-0002-8478-5006 ; 0000-0002-1381-9838</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,2096,27901,27902</link.rule.ids></links><search><creatorcontrib>Heindel, Tobias</creatorcontrib><creatorcontrib>Thoma, Alexander</creatorcontrib><creatorcontrib>Schwartz, Ido</creatorcontrib><creatorcontrib>Schmidgall, Emma R.</creatorcontrib><creatorcontrib>Gantz, Liron</creatorcontrib><creatorcontrib>Cogan, Dan</creatorcontrib><creatorcontrib>Strauß, Max</creatorcontrib><creatorcontrib>Schnauber, Peter</creatorcontrib><creatorcontrib>Gschrey, Manuel</creatorcontrib><creatorcontrib>Schulze, Jan-Hindrik</creatorcontrib><creatorcontrib>Strittmatter, Andre</creatorcontrib><creatorcontrib>Rodt, Sven</creatorcontrib><creatorcontrib>Gershoni, David</creatorcontrib><creatorcontrib>Reitzenstein, Stephan</creatorcontrib><title>Accessing the dark exciton spin in deterministic quantum-dot microlenses</title><title>APL photonics</title><description>The dark exciton state in semiconductor quantum dots (QDs) constitutes a long-lived solid-state qubit which has the potential to play an important role in implementations of solid-state-based quantum information architectures. In this work, we exploit deterministically fabricated QD microlenses which promise enhanced photon extraction, to optically prepare and read out the dark exciton spin and observe its coherent precession. The optical access to the dark exciton is provided via spin-blockaded metastable biexciton states acting as heralding states, which are identified by deploying polarization-sensitive spectroscopy as well as time-resolved photon cross-correlation experiments. Our experiments reveal a spin-precession period of the dark exciton of (0.82 ± 0.01) ns corresponding to a fine-structure splitting of (5.0 ± 0.7) μeV between its eigenstates ↑ ⇑ ± ↓ ⇓ . By exploiting microlenses deterministically fabricated above pre-selected QDs, our work demonstrates the possibility to scale up implementations of quantum information processing schemes using the QD-confined dark exciton spin qubit, such as the generation of photonic cluster states or the realization of a solid-state-based quantum memory.</description><issn>2378-0967</issn><issn>2378-0967</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kE1LAzEQhoMoWGoP_oNcFbYmm6_NsRS1hYIXPYdsPmpqd1OTFPTfu7pFPAkDMwwvDzMPANcYzTHi5A7PGUIUU3EGJjURTYUkF-d_5kswy3mHEMJcYEnZBKwWxricQ7-F5dVBq9MbdB8mlNjDfAg9HMq64lIX-pBLMPD9qPty7CobC-yCSXHv-uzyFbjwep_d7NSn4OXh_nm5qjZPj-vlYlMZSnCppKc15UbytmaUC6Kps1LXllPdYMERk42XFmFEEMeyQdQ7LNumlUY4QpglU7AeuTbqnTqk0On0qaIO6mcR01bpNNy5d6ptDWGGemsaRkXLm9rX2EhKpCWiFnxg3Yys4Yuck_O_PIzUt1GF1cnokL0ds3mQo0uI_T_hL165dCM</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Heindel, Tobias</creator><creator>Thoma, Alexander</creator><creator>Schwartz, Ido</creator><creator>Schmidgall, Emma R.</creator><creator>Gantz, Liron</creator><creator>Cogan, Dan</creator><creator>Strauß, Max</creator><creator>Schnauber, Peter</creator><creator>Gschrey, Manuel</creator><creator>Schulze, Jan-Hindrik</creator><creator>Strittmatter, Andre</creator><creator>Rodt, Sven</creator><creator>Gershoni, David</creator><creator>Reitzenstein, Stephan</creator><general>AIP Publishing LLC</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1148-404X</orcidid><orcidid>https://orcid.org/0000-0002-8478-5006</orcidid><orcidid>https://orcid.org/0000-0002-1381-9838</orcidid></search><sort><creationdate>20171201</creationdate><title>Accessing the dark exciton spin in deterministic quantum-dot microlenses</title><author>Heindel, Tobias ; Thoma, Alexander ; Schwartz, Ido ; Schmidgall, Emma R. ; Gantz, Liron ; Cogan, Dan ; Strauß, Max ; Schnauber, Peter ; Gschrey, Manuel ; Schulze, Jan-Hindrik ; Strittmatter, Andre ; Rodt, Sven ; Gershoni, David ; Reitzenstein, Stephan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-9f4246c96b254673a4ed9a2d64a81760598f9d01030619804fe19b8b9c7e335d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heindel, Tobias</creatorcontrib><creatorcontrib>Thoma, Alexander</creatorcontrib><creatorcontrib>Schwartz, Ido</creatorcontrib><creatorcontrib>Schmidgall, Emma R.</creatorcontrib><creatorcontrib>Gantz, Liron</creatorcontrib><creatorcontrib>Cogan, Dan</creatorcontrib><creatorcontrib>Strauß, Max</creatorcontrib><creatorcontrib>Schnauber, Peter</creatorcontrib><creatorcontrib>Gschrey, Manuel</creatorcontrib><creatorcontrib>Schulze, Jan-Hindrik</creatorcontrib><creatorcontrib>Strittmatter, Andre</creatorcontrib><creatorcontrib>Rodt, Sven</creatorcontrib><creatorcontrib>Gershoni, David</creatorcontrib><creatorcontrib>Reitzenstein, Stephan</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>APL photonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heindel, Tobias</au><au>Thoma, Alexander</au><au>Schwartz, Ido</au><au>Schmidgall, Emma R.</au><au>Gantz, Liron</au><au>Cogan, Dan</au><au>Strauß, Max</au><au>Schnauber, Peter</au><au>Gschrey, Manuel</au><au>Schulze, Jan-Hindrik</au><au>Strittmatter, Andre</au><au>Rodt, Sven</au><au>Gershoni, David</au><au>Reitzenstein, Stephan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accessing the dark exciton spin in deterministic quantum-dot microlenses</atitle><jtitle>APL photonics</jtitle><date>2017-12-01</date><risdate>2017</risdate><volume>2</volume><issue>12</issue><spage>121303</spage><epage>121303-7</epage><pages>121303-121303-7</pages><issn>2378-0967</issn><eissn>2378-0967</eissn><coden>APPHD2</coden><abstract>The dark exciton state in semiconductor quantum dots (QDs) constitutes a long-lived solid-state qubit which has the potential to play an important role in implementations of solid-state-based quantum information architectures. In this work, we exploit deterministically fabricated QD microlenses which promise enhanced photon extraction, to optically prepare and read out the dark exciton spin and observe its coherent precession. The optical access to the dark exciton is provided via spin-blockaded metastable biexciton states acting as heralding states, which are identified by deploying polarization-sensitive spectroscopy as well as time-resolved photon cross-correlation experiments. Our experiments reveal a spin-precession period of the dark exciton of (0.82 ± 0.01) ns corresponding to a fine-structure splitting of (5.0 ± 0.7) μeV between its eigenstates ↑ ⇑ ± ↓ ⇓ . By exploiting microlenses deterministically fabricated above pre-selected QDs, our work demonstrates the possibility to scale up implementations of quantum information processing schemes using the QD-confined dark exciton spin qubit, such as the generation of photonic cluster states or the realization of a solid-state-based quantum memory.</abstract><pub>AIP Publishing LLC</pub><doi>10.1063/1.5004147</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-1148-404X</orcidid><orcidid>https://orcid.org/0000-0002-8478-5006</orcidid><orcidid>https://orcid.org/0000-0002-1381-9838</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2378-0967
ispartof APL photonics, 2017-12, Vol.2 (12), p.121303-121303-7
issn 2378-0967
2378-0967
language eng
recordid cdi_scitation_primary_10_1063_1_5004147
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
title Accessing the dark exciton spin in deterministic quantum-dot microlenses
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T21%3A57%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accessing%20the%20dark%20exciton%20spin%20in%20deterministic%20quantum-dot%20microlenses&rft.jtitle=APL%20photonics&rft.au=Heindel,%20Tobias&rft.date=2017-12-01&rft.volume=2&rft.issue=12&rft.spage=121303&rft.epage=121303-7&rft.pages=121303-121303-7&rft.issn=2378-0967&rft.eissn=2378-0967&rft.coden=APPHD2&rft_id=info:doi/10.1063/1.5004147&rft_dat=%3Cscitation_doaj_%3Eapp%3C/scitation_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_bbc35c4fdc8547b682f21c9439d37276&rfr_iscdi=true