Accessing the dark exciton spin in deterministic quantum-dot microlenses
The dark exciton state in semiconductor quantum dots (QDs) constitutes a long-lived solid-state qubit which has the potential to play an important role in implementations of solid-state-based quantum information architectures. In this work, we exploit deterministically fabricated QD microlenses whic...
Gespeichert in:
Veröffentlicht in: | APL photonics 2017-12, Vol.2 (12), p.121303-121303-7 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 121303-7 |
---|---|
container_issue | 12 |
container_start_page | 121303 |
container_title | APL photonics |
container_volume | 2 |
creator | Heindel, Tobias Thoma, Alexander Schwartz, Ido Schmidgall, Emma R. Gantz, Liron Cogan, Dan Strauß, Max Schnauber, Peter Gschrey, Manuel Schulze, Jan-Hindrik Strittmatter, Andre Rodt, Sven Gershoni, David Reitzenstein, Stephan |
description | The dark exciton state in semiconductor quantum dots (QDs) constitutes a long-lived solid-state qubit which has the potential to play an important role in implementations of solid-state-based quantum information architectures. In this work, we exploit deterministically fabricated QD microlenses which promise enhanced photon extraction, to optically prepare and read out the dark exciton spin and observe its coherent precession. The optical access to the dark exciton is provided via spin-blockaded metastable biexciton states acting as heralding states, which are identified by deploying polarization-sensitive spectroscopy as well as time-resolved photon cross-correlation experiments. Our experiments reveal a spin-precession period of the dark exciton of (0.82 ± 0.01) ns corresponding to a fine-structure splitting of (5.0 ± 0.7) μeV between its eigenstates
↑
⇑
±
↓
⇓
. By exploiting microlenses deterministically fabricated above pre-selected QDs, our work demonstrates the possibility to scale up implementations of quantum information processing schemes using the QD-confined dark exciton spin qubit, such as the generation of photonic cluster states or the realization of a solid-state-based quantum memory. |
doi_str_mv | 10.1063/1.5004147 |
format | Article |
fullrecord | <record><control><sourceid>scitation_doaj_</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_5004147</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_bbc35c4fdc8547b682f21c9439d37276</doaj_id><sourcerecordid>app</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-9f4246c96b254673a4ed9a2d64a81760598f9d01030619804fe19b8b9c7e335d3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWGoP_oNcFbYmm6_NsRS1hYIXPYdsPmpqd1OTFPTfu7pFPAkDMwwvDzMPANcYzTHi5A7PGUIUU3EGJjURTYUkF-d_5kswy3mHEMJcYEnZBKwWxricQ7-F5dVBq9MbdB8mlNjDfAg9HMq64lIX-pBLMPD9qPty7CobC-yCSXHv-uzyFbjwep_d7NSn4OXh_nm5qjZPj-vlYlMZSnCppKc15UbytmaUC6Kps1LXllPdYMERk42XFmFEEMeyQdQ7LNumlUY4QpglU7AeuTbqnTqk0On0qaIO6mcR01bpNNy5d6ptDWGGemsaRkXLm9rX2EhKpCWiFnxg3Yys4Yuck_O_PIzUt1GF1cnokL0ds3mQo0uI_T_hL165dCM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Accessing the dark exciton spin in deterministic quantum-dot microlenses</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Heindel, Tobias ; Thoma, Alexander ; Schwartz, Ido ; Schmidgall, Emma R. ; Gantz, Liron ; Cogan, Dan ; Strauß, Max ; Schnauber, Peter ; Gschrey, Manuel ; Schulze, Jan-Hindrik ; Strittmatter, Andre ; Rodt, Sven ; Gershoni, David ; Reitzenstein, Stephan</creator><creatorcontrib>Heindel, Tobias ; Thoma, Alexander ; Schwartz, Ido ; Schmidgall, Emma R. ; Gantz, Liron ; Cogan, Dan ; Strauß, Max ; Schnauber, Peter ; Gschrey, Manuel ; Schulze, Jan-Hindrik ; Strittmatter, Andre ; Rodt, Sven ; Gershoni, David ; Reitzenstein, Stephan</creatorcontrib><description>The dark exciton state in semiconductor quantum dots (QDs) constitutes a long-lived solid-state qubit which has the potential to play an important role in implementations of solid-state-based quantum information architectures. In this work, we exploit deterministically fabricated QD microlenses which promise enhanced photon extraction, to optically prepare and read out the dark exciton spin and observe its coherent precession. The optical access to the dark exciton is provided via spin-blockaded metastable biexciton states acting as heralding states, which are identified by deploying polarization-sensitive spectroscopy as well as time-resolved photon cross-correlation experiments. Our experiments reveal a spin-precession period of the dark exciton of (0.82 ± 0.01) ns corresponding to a fine-structure splitting of (5.0 ± 0.7) μeV between its eigenstates
↑
⇑
±
↓
⇓
. By exploiting microlenses deterministically fabricated above pre-selected QDs, our work demonstrates the possibility to scale up implementations of quantum information processing schemes using the QD-confined dark exciton spin qubit, such as the generation of photonic cluster states or the realization of a solid-state-based quantum memory.</description><identifier>ISSN: 2378-0967</identifier><identifier>EISSN: 2378-0967</identifier><identifier>DOI: 10.1063/1.5004147</identifier><identifier>CODEN: APPHD2</identifier><language>eng</language><publisher>AIP Publishing LLC</publisher><ispartof>APL photonics, 2017-12, Vol.2 (12), p.121303-121303-7</ispartof><rights>Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c431t-9f4246c96b254673a4ed9a2d64a81760598f9d01030619804fe19b8b9c7e335d3</citedby><cites>FETCH-LOGICAL-c431t-9f4246c96b254673a4ed9a2d64a81760598f9d01030619804fe19b8b9c7e335d3</cites><orcidid>0000-0003-1148-404X ; 0000-0002-8478-5006 ; 0000-0002-1381-9838</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,2096,27901,27902</link.rule.ids></links><search><creatorcontrib>Heindel, Tobias</creatorcontrib><creatorcontrib>Thoma, Alexander</creatorcontrib><creatorcontrib>Schwartz, Ido</creatorcontrib><creatorcontrib>Schmidgall, Emma R.</creatorcontrib><creatorcontrib>Gantz, Liron</creatorcontrib><creatorcontrib>Cogan, Dan</creatorcontrib><creatorcontrib>Strauß, Max</creatorcontrib><creatorcontrib>Schnauber, Peter</creatorcontrib><creatorcontrib>Gschrey, Manuel</creatorcontrib><creatorcontrib>Schulze, Jan-Hindrik</creatorcontrib><creatorcontrib>Strittmatter, Andre</creatorcontrib><creatorcontrib>Rodt, Sven</creatorcontrib><creatorcontrib>Gershoni, David</creatorcontrib><creatorcontrib>Reitzenstein, Stephan</creatorcontrib><title>Accessing the dark exciton spin in deterministic quantum-dot microlenses</title><title>APL photonics</title><description>The dark exciton state in semiconductor quantum dots (QDs) constitutes a long-lived solid-state qubit which has the potential to play an important role in implementations of solid-state-based quantum information architectures. In this work, we exploit deterministically fabricated QD microlenses which promise enhanced photon extraction, to optically prepare and read out the dark exciton spin and observe its coherent precession. The optical access to the dark exciton is provided via spin-blockaded metastable biexciton states acting as heralding states, which are identified by deploying polarization-sensitive spectroscopy as well as time-resolved photon cross-correlation experiments. Our experiments reveal a spin-precession period of the dark exciton of (0.82 ± 0.01) ns corresponding to a fine-structure splitting of (5.0 ± 0.7) μeV between its eigenstates
↑
⇑
±
↓
⇓
. By exploiting microlenses deterministically fabricated above pre-selected QDs, our work demonstrates the possibility to scale up implementations of quantum information processing schemes using the QD-confined dark exciton spin qubit, such as the generation of photonic cluster states or the realization of a solid-state-based quantum memory.</description><issn>2378-0967</issn><issn>2378-0967</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kE1LAzEQhoMoWGoP_oNcFbYmm6_NsRS1hYIXPYdsPmpqd1OTFPTfu7pFPAkDMwwvDzMPANcYzTHi5A7PGUIUU3EGJjURTYUkF-d_5kswy3mHEMJcYEnZBKwWxricQ7-F5dVBq9MbdB8mlNjDfAg9HMq64lIX-pBLMPD9qPty7CobC-yCSXHv-uzyFbjwep_d7NSn4OXh_nm5qjZPj-vlYlMZSnCppKc15UbytmaUC6Kps1LXllPdYMERk42XFmFEEMeyQdQ7LNumlUY4QpglU7AeuTbqnTqk0On0qaIO6mcR01bpNNy5d6ptDWGGemsaRkXLm9rX2EhKpCWiFnxg3Yys4Yuck_O_PIzUt1GF1cnokL0ds3mQo0uI_T_hL165dCM</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Heindel, Tobias</creator><creator>Thoma, Alexander</creator><creator>Schwartz, Ido</creator><creator>Schmidgall, Emma R.</creator><creator>Gantz, Liron</creator><creator>Cogan, Dan</creator><creator>Strauß, Max</creator><creator>Schnauber, Peter</creator><creator>Gschrey, Manuel</creator><creator>Schulze, Jan-Hindrik</creator><creator>Strittmatter, Andre</creator><creator>Rodt, Sven</creator><creator>Gershoni, David</creator><creator>Reitzenstein, Stephan</creator><general>AIP Publishing LLC</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1148-404X</orcidid><orcidid>https://orcid.org/0000-0002-8478-5006</orcidid><orcidid>https://orcid.org/0000-0002-1381-9838</orcidid></search><sort><creationdate>20171201</creationdate><title>Accessing the dark exciton spin in deterministic quantum-dot microlenses</title><author>Heindel, Tobias ; Thoma, Alexander ; Schwartz, Ido ; Schmidgall, Emma R. ; Gantz, Liron ; Cogan, Dan ; Strauß, Max ; Schnauber, Peter ; Gschrey, Manuel ; Schulze, Jan-Hindrik ; Strittmatter, Andre ; Rodt, Sven ; Gershoni, David ; Reitzenstein, Stephan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-9f4246c96b254673a4ed9a2d64a81760598f9d01030619804fe19b8b9c7e335d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heindel, Tobias</creatorcontrib><creatorcontrib>Thoma, Alexander</creatorcontrib><creatorcontrib>Schwartz, Ido</creatorcontrib><creatorcontrib>Schmidgall, Emma R.</creatorcontrib><creatorcontrib>Gantz, Liron</creatorcontrib><creatorcontrib>Cogan, Dan</creatorcontrib><creatorcontrib>Strauß, Max</creatorcontrib><creatorcontrib>Schnauber, Peter</creatorcontrib><creatorcontrib>Gschrey, Manuel</creatorcontrib><creatorcontrib>Schulze, Jan-Hindrik</creatorcontrib><creatorcontrib>Strittmatter, Andre</creatorcontrib><creatorcontrib>Rodt, Sven</creatorcontrib><creatorcontrib>Gershoni, David</creatorcontrib><creatorcontrib>Reitzenstein, Stephan</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>APL photonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heindel, Tobias</au><au>Thoma, Alexander</au><au>Schwartz, Ido</au><au>Schmidgall, Emma R.</au><au>Gantz, Liron</au><au>Cogan, Dan</au><au>Strauß, Max</au><au>Schnauber, Peter</au><au>Gschrey, Manuel</au><au>Schulze, Jan-Hindrik</au><au>Strittmatter, Andre</au><au>Rodt, Sven</au><au>Gershoni, David</au><au>Reitzenstein, Stephan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accessing the dark exciton spin in deterministic quantum-dot microlenses</atitle><jtitle>APL photonics</jtitle><date>2017-12-01</date><risdate>2017</risdate><volume>2</volume><issue>12</issue><spage>121303</spage><epage>121303-7</epage><pages>121303-121303-7</pages><issn>2378-0967</issn><eissn>2378-0967</eissn><coden>APPHD2</coden><abstract>The dark exciton state in semiconductor quantum dots (QDs) constitutes a long-lived solid-state qubit which has the potential to play an important role in implementations of solid-state-based quantum information architectures. In this work, we exploit deterministically fabricated QD microlenses which promise enhanced photon extraction, to optically prepare and read out the dark exciton spin and observe its coherent precession. The optical access to the dark exciton is provided via spin-blockaded metastable biexciton states acting as heralding states, which are identified by deploying polarization-sensitive spectroscopy as well as time-resolved photon cross-correlation experiments. Our experiments reveal a spin-precession period of the dark exciton of (0.82 ± 0.01) ns corresponding to a fine-structure splitting of (5.0 ± 0.7) μeV between its eigenstates
↑
⇑
±
↓
⇓
. By exploiting microlenses deterministically fabricated above pre-selected QDs, our work demonstrates the possibility to scale up implementations of quantum information processing schemes using the QD-confined dark exciton spin qubit, such as the generation of photonic cluster states or the realization of a solid-state-based quantum memory.</abstract><pub>AIP Publishing LLC</pub><doi>10.1063/1.5004147</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-1148-404X</orcidid><orcidid>https://orcid.org/0000-0002-8478-5006</orcidid><orcidid>https://orcid.org/0000-0002-1381-9838</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2378-0967 |
ispartof | APL photonics, 2017-12, Vol.2 (12), p.121303-121303-7 |
issn | 2378-0967 2378-0967 |
language | eng |
recordid | cdi_scitation_primary_10_1063_1_5004147 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
title | Accessing the dark exciton spin in deterministic quantum-dot microlenses |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T21%3A57%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accessing%20the%20dark%20exciton%20spin%20in%20deterministic%20quantum-dot%20microlenses&rft.jtitle=APL%20photonics&rft.au=Heindel,%20Tobias&rft.date=2017-12-01&rft.volume=2&rft.issue=12&rft.spage=121303&rft.epage=121303-7&rft.pages=121303-121303-7&rft.issn=2378-0967&rft.eissn=2378-0967&rft.coden=APPHD2&rft_id=info:doi/10.1063/1.5004147&rft_dat=%3Cscitation_doaj_%3Eapp%3C/scitation_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_bbc35c4fdc8547b682f21c9439d37276&rfr_iscdi=true |