High electrical conductivity of individual epitaxially grown MoO2 nanorods

Molybdenum dioxides (MoO2) have potential applications in batteries owing to their good electrical conductivity. Here, we report the electrical properties of high-quality MoO2 nanorods grown using chemical vapor deposition which are partially wrapped in MoS2 on c-sapphire [α-Al2O3(0001)] substrates...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2017-08, Vol.111 (9)
Hauptverfasser: Xie, Qiliang, Zheng, Xiaoming, Wu, Di, Chen, Xiaoliu, Shi, Jiao, Han, Xintong, Zhang, Xueao, Peng, Gang, Gao, Yongli, Huang, Han
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Molybdenum dioxides (MoO2) have potential applications in batteries owing to their good electrical conductivity. Here, we report the electrical properties of high-quality MoO2 nanorods grown using chemical vapor deposition which are partially wrapped in MoS2 on c-sapphire [α-Al2O3(0001)] substrates and subsequently transferred onto Si wafers for device fabrication. The as-fabricated devices with the individual MoO2 nanorods showed a high electrical conductivity of 6.04 × 103 S/cm and a low contact resistance of 33 Ω, thus demonstrating a superior electrical performance than in any other previous reports on MoO2-based devices. The MoS2 wrapping around the rods had a negligible effect on the conductivity. The electrical conductivity of the MoO2 nanorods was observed to decline in air when a high voltage was applied; this could be mitigated by packaging the nanorods using SiO2 or holding them under high vacuum. Our results provide the foundation for understanding the properties and potential applications of MoO2 nanorods in nanoscale electronic devices.
ISSN:0003-6951
1077-3118
DOI:10.1063/1.5001183