Calculation of point defect concentration in Cu2ZnSnS4: Insights into the high-temperature equilibrium and quenching
Herein, we study the native point defect equilibrium in Cu2ZnSnS4 (CZTS) by applying a statistical thermodynamic model. The stable chemical-potential space (SCPS) of CZTS at an elevated temperature was estimated directly, on the basis of deviations from stoichiometry calculated for the different com...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2017-07, Vol.122 (3) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | |
container_title | Journal of applied physics |
container_volume | 122 |
creator | Kosyak, V. Postnikov, A. V. Scragg, J. Scarpulla, M. A. Platzer-Björkman, C. |
description | Herein, we study the native point defect equilibrium in Cu2ZnSnS4 (CZTS) by applying a statistical thermodynamic model. The stable chemical-potential space (SCPS) of CZTS at an elevated temperature was estimated directly, on the basis of deviations from stoichiometry calculated for the different combinations of chemical potential of the components. We show that the SCPS is narrow due to high concentration of
V
C
u
−
−
Z
n
C
u
+
complex which is dominant over other complexes and isolated defects. The CZTS was found to have p-type conductivity for both stoichiometric and Cu-poor/Zn-rich composition. It is established that the reason for this is that the majority of donor-like
Z
n
C
u
+
antisites are involved in the formation of
V
C
u
−
−
Z
n
C
u
+
complex making
C
u
Z
n
−
dominant and providing p-type conductivity even for Cu-poor/Zn-rich composition. However, our calculation reveals that the hole concentration is almost insensitive to the variation of the chemical composition within the composition region of the single-phase CZTS due to nearly constant concentration of dominant charged defects. The calculations for the full equilibrium and quenching indicate that hole concentration is strongly dependent on the annealing temperature and decreases substantially after the drastic cooling. This means that the precise control of annealing temperature and post-annealing cooling rate are critical for tuning the electrical properties of CZTS. |
doi_str_mv | 10.1063/1.4994689 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_4994689</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2116100405</sourcerecordid><originalsourceid>FETCH-LOGICAL-c433t-25cbf97e74ce6547ee822cc7bdbed3e851c5978610a652a54219a9de755864f03</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhiMEEkvLgX9giROItLZjJza31fLRSiv10MKBi-U4k42rrJ36o4h_j8uuWiEkTqOZeebVvDNV9YbgM4Lb5pycMSlZK-SzakWwkHXHOX5erTCmpBayky-rVzHeYkyIaOSqShs9mzzrZL1DfkSLty6hAUYwCRnvDLgUDl3r0CbTH-7aXbOP6NJFu5tSLOXkUZoATSWvE-wXKAM5AIK7bGfbB5v3SLsB3WVwZrJud1q9GPUc4fUxnlTfvny-2VzU26uvl5v1tjasaVJNuelH2UHHDLScdQCCUmO6fuhhaEBwYrjsREuwbjnVnFEitRygWBYtG3FzUn046MafsOReLcHudfilvLbqk_2-Vj7sVM6qaahgouDvDvik57_Yi_VWPdQwlbghhN2Twr49sEvwxVdM6tbn4IobRQkpK2GG-ZOiCT7GAOOjLMHq4V-KqOO_Cvv-uKyx6c_FH-F7H55AtQzj_-B_lX8D6rij7Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2116100405</pqid></control><display><type>article</type><title>Calculation of point defect concentration in Cu2ZnSnS4: Insights into the high-temperature equilibrium and quenching</title><source>American Institute of Physics (AIP) Journals</source><source>Alma/SFX Local Collection</source><source>SWEPUB Freely available online</source><creator>Kosyak, V. ; Postnikov, A. V. ; Scragg, J. ; Scarpulla, M. A. ; Platzer-Björkman, C.</creator><creatorcontrib>Kosyak, V. ; Postnikov, A. V. ; Scragg, J. ; Scarpulla, M. A. ; Platzer-Björkman, C.</creatorcontrib><description>Herein, we study the native point defect equilibrium in Cu2ZnSnS4 (CZTS) by applying a statistical thermodynamic model. The stable chemical-potential space (SCPS) of CZTS at an elevated temperature was estimated directly, on the basis of deviations from stoichiometry calculated for the different combinations of chemical potential of the components. We show that the SCPS is narrow due to high concentration of
V
C
u
−
−
Z
n
C
u
+
complex which is dominant over other complexes and isolated defects. The CZTS was found to have p-type conductivity for both stoichiometric and Cu-poor/Zn-rich composition. It is established that the reason for this is that the majority of donor-like
Z
n
C
u
+
antisites are involved in the formation of
V
C
u
−
−
Z
n
C
u
+
complex making
C
u
Z
n
−
dominant and providing p-type conductivity even for Cu-poor/Zn-rich composition. However, our calculation reveals that the hole concentration is almost insensitive to the variation of the chemical composition within the composition region of the single-phase CZTS due to nearly constant concentration of dominant charged defects. The calculations for the full equilibrium and quenching indicate that hole concentration is strongly dependent on the annealing temperature and decreases substantially after the drastic cooling. This means that the precise control of annealing temperature and post-annealing cooling rate are critical for tuning the electrical properties of CZTS.</description><identifier>ISSN: 0021-8979</identifier><identifier>ISSN: 1089-7550</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.4994689</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Annealing ; Applied physics ; Chemical composition ; Chemical potential ; Condensed Matter ; Cooling rate ; Copper ; Defects ; Electrical properties ; Electrical resistivity ; Equilibrium ; High temperature ; Materials Science ; Organic chemistry ; Physics ; Point defects ; Quenching ; Stoichiometry ; Temperature dependence ; Thermodynamic models ; Zinc</subject><ispartof>Journal of applied physics, 2017-07, Vol.122 (3)</ispartof><rights>Author(s)</rights><rights>2017 Author(s). Published by AIP Publishing.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c433t-25cbf97e74ce6547ee822cc7bdbed3e851c5978610a652a54219a9de755864f03</citedby><cites>FETCH-LOGICAL-c433t-25cbf97e74ce6547ee822cc7bdbed3e851c5978610a652a54219a9de755864f03</cites><orcidid>0000-0002-6554-9673 ; 0000-0001-9203-6235</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/1.4994689$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,550,776,780,790,881,4498,27901,27902,76127</link.rule.ids><backlink>$$Uhttps://hal.univ-lorraine.fr/hal-02903114$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-332848$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Kosyak, V.</creatorcontrib><creatorcontrib>Postnikov, A. V.</creatorcontrib><creatorcontrib>Scragg, J.</creatorcontrib><creatorcontrib>Scarpulla, M. A.</creatorcontrib><creatorcontrib>Platzer-Björkman, C.</creatorcontrib><title>Calculation of point defect concentration in Cu2ZnSnS4: Insights into the high-temperature equilibrium and quenching</title><title>Journal of applied physics</title><description>Herein, we study the native point defect equilibrium in Cu2ZnSnS4 (CZTS) by applying a statistical thermodynamic model. The stable chemical-potential space (SCPS) of CZTS at an elevated temperature was estimated directly, on the basis of deviations from stoichiometry calculated for the different combinations of chemical potential of the components. We show that the SCPS is narrow due to high concentration of
V
C
u
−
−
Z
n
C
u
+
complex which is dominant over other complexes and isolated defects. The CZTS was found to have p-type conductivity for both stoichiometric and Cu-poor/Zn-rich composition. It is established that the reason for this is that the majority of donor-like
Z
n
C
u
+
antisites are involved in the formation of
V
C
u
−
−
Z
n
C
u
+
complex making
C
u
Z
n
−
dominant and providing p-type conductivity even for Cu-poor/Zn-rich composition. However, our calculation reveals that the hole concentration is almost insensitive to the variation of the chemical composition within the composition region of the single-phase CZTS due to nearly constant concentration of dominant charged defects. The calculations for the full equilibrium and quenching indicate that hole concentration is strongly dependent on the annealing temperature and decreases substantially after the drastic cooling. This means that the precise control of annealing temperature and post-annealing cooling rate are critical for tuning the electrical properties of CZTS.</description><subject>Annealing</subject><subject>Applied physics</subject><subject>Chemical composition</subject><subject>Chemical potential</subject><subject>Condensed Matter</subject><subject>Cooling rate</subject><subject>Copper</subject><subject>Defects</subject><subject>Electrical properties</subject><subject>Electrical resistivity</subject><subject>Equilibrium</subject><subject>High temperature</subject><subject>Materials Science</subject><subject>Organic chemistry</subject><subject>Physics</subject><subject>Point defects</subject><subject>Quenching</subject><subject>Stoichiometry</subject><subject>Temperature dependence</subject><subject>Thermodynamic models</subject><subject>Zinc</subject><issn>0021-8979</issn><issn>1089-7550</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>D8T</sourceid><recordid>eNp9kU1v1DAQhiMEEkvLgX9giROItLZjJza31fLRSiv10MKBi-U4k42rrJ36o4h_j8uuWiEkTqOZeebVvDNV9YbgM4Lb5pycMSlZK-SzakWwkHXHOX5erTCmpBayky-rVzHeYkyIaOSqShs9mzzrZL1DfkSLty6hAUYwCRnvDLgUDl3r0CbTH-7aXbOP6NJFu5tSLOXkUZoATSWvE-wXKAM5AIK7bGfbB5v3SLsB3WVwZrJud1q9GPUc4fUxnlTfvny-2VzU26uvl5v1tjasaVJNuelH2UHHDLScdQCCUmO6fuhhaEBwYrjsREuwbjnVnFEitRygWBYtG3FzUn046MafsOReLcHudfilvLbqk_2-Vj7sVM6qaahgouDvDvik57_Yi_VWPdQwlbghhN2Twr49sEvwxVdM6tbn4IobRQkpK2GG-ZOiCT7GAOOjLMHq4V-KqOO_Cvv-uKyx6c_FH-F7H55AtQzj_-B_lX8D6rij7Q</recordid><startdate>20170721</startdate><enddate>20170721</enddate><creator>Kosyak, V.</creator><creator>Postnikov, A. V.</creator><creator>Scragg, J.</creator><creator>Scarpulla, M. A.</creator><creator>Platzer-Björkman, C.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><scope>ACNBI</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>DF2</scope><scope>ZZAVC</scope><orcidid>https://orcid.org/0000-0002-6554-9673</orcidid><orcidid>https://orcid.org/0000-0001-9203-6235</orcidid></search><sort><creationdate>20170721</creationdate><title>Calculation of point defect concentration in Cu2ZnSnS4: Insights into the high-temperature equilibrium and quenching</title><author>Kosyak, V. ; Postnikov, A. V. ; Scragg, J. ; Scarpulla, M. A. ; Platzer-Björkman, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c433t-25cbf97e74ce6547ee822cc7bdbed3e851c5978610a652a54219a9de755864f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Annealing</topic><topic>Applied physics</topic><topic>Chemical composition</topic><topic>Chemical potential</topic><topic>Condensed Matter</topic><topic>Cooling rate</topic><topic>Copper</topic><topic>Defects</topic><topic>Electrical properties</topic><topic>Electrical resistivity</topic><topic>Equilibrium</topic><topic>High temperature</topic><topic>Materials Science</topic><topic>Organic chemistry</topic><topic>Physics</topic><topic>Point defects</topic><topic>Quenching</topic><topic>Stoichiometry</topic><topic>Temperature dependence</topic><topic>Thermodynamic models</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kosyak, V.</creatorcontrib><creatorcontrib>Postnikov, A. V.</creatorcontrib><creatorcontrib>Scragg, J.</creatorcontrib><creatorcontrib>Scarpulla, M. A.</creatorcontrib><creatorcontrib>Platzer-Björkman, C.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>SWEPUB Uppsala universitet full text</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Uppsala universitet</collection><collection>SwePub Articles full text</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kosyak, V.</au><au>Postnikov, A. V.</au><au>Scragg, J.</au><au>Scarpulla, M. A.</au><au>Platzer-Björkman, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Calculation of point defect concentration in Cu2ZnSnS4: Insights into the high-temperature equilibrium and quenching</atitle><jtitle>Journal of applied physics</jtitle><date>2017-07-21</date><risdate>2017</risdate><volume>122</volume><issue>3</issue><issn>0021-8979</issn><issn>1089-7550</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>Herein, we study the native point defect equilibrium in Cu2ZnSnS4 (CZTS) by applying a statistical thermodynamic model. The stable chemical-potential space (SCPS) of CZTS at an elevated temperature was estimated directly, on the basis of deviations from stoichiometry calculated for the different combinations of chemical potential of the components. We show that the SCPS is narrow due to high concentration of
V
C
u
−
−
Z
n
C
u
+
complex which is dominant over other complexes and isolated defects. The CZTS was found to have p-type conductivity for both stoichiometric and Cu-poor/Zn-rich composition. It is established that the reason for this is that the majority of donor-like
Z
n
C
u
+
antisites are involved in the formation of
V
C
u
−
−
Z
n
C
u
+
complex making
C
u
Z
n
−
dominant and providing p-type conductivity even for Cu-poor/Zn-rich composition. However, our calculation reveals that the hole concentration is almost insensitive to the variation of the chemical composition within the composition region of the single-phase CZTS due to nearly constant concentration of dominant charged defects. The calculations for the full equilibrium and quenching indicate that hole concentration is strongly dependent on the annealing temperature and decreases substantially after the drastic cooling. This means that the precise control of annealing temperature and post-annealing cooling rate are critical for tuning the electrical properties of CZTS.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4994689</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-6554-9673</orcidid><orcidid>https://orcid.org/0000-0001-9203-6235</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 2017-07, Vol.122 (3) |
issn | 0021-8979 1089-7550 1089-7550 |
language | eng |
recordid | cdi_scitation_primary_10_1063_1_4994689 |
source | American Institute of Physics (AIP) Journals; Alma/SFX Local Collection; SWEPUB Freely available online |
subjects | Annealing Applied physics Chemical composition Chemical potential Condensed Matter Cooling rate Copper Defects Electrical properties Electrical resistivity Equilibrium High temperature Materials Science Organic chemistry Physics Point defects Quenching Stoichiometry Temperature dependence Thermodynamic models Zinc |
title | Calculation of point defect concentration in Cu2ZnSnS4: Insights into the high-temperature equilibrium and quenching |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T11%3A25%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Calculation%20of%20point%20defect%20concentration%20in%20Cu2ZnSnS4:%20Insights%20into%20the%20high-temperature%20equilibrium%20and%20quenching&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Kosyak,%20V.&rft.date=2017-07-21&rft.volume=122&rft.issue=3&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/1.4994689&rft_dat=%3Cproquest_scita%3E2116100405%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2116100405&rft_id=info:pmid/&rfr_iscdi=true |