Calculation of point defect concentration in Cu2ZnSnS4: Insights into the high-temperature equilibrium and quenching

Herein, we study the native point defect equilibrium in Cu2ZnSnS4 (CZTS) by applying a statistical thermodynamic model. The stable chemical-potential space (SCPS) of CZTS at an elevated temperature was estimated directly, on the basis of deviations from stoichiometry calculated for the different com...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2017-07, Vol.122 (3)
Hauptverfasser: Kosyak, V., Postnikov, A. V., Scragg, J., Scarpulla, M. A., Platzer-Björkman, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title Journal of applied physics
container_volume 122
creator Kosyak, V.
Postnikov, A. V.
Scragg, J.
Scarpulla, M. A.
Platzer-Björkman, C.
description Herein, we study the native point defect equilibrium in Cu2ZnSnS4 (CZTS) by applying a statistical thermodynamic model. The stable chemical-potential space (SCPS) of CZTS at an elevated temperature was estimated directly, on the basis of deviations from stoichiometry calculated for the different combinations of chemical potential of the components. We show that the SCPS is narrow due to high concentration of V C u − − Z n C u + complex which is dominant over other complexes and isolated defects. The CZTS was found to have p-type conductivity for both stoichiometric and Cu-poor/Zn-rich composition. It is established that the reason for this is that the majority of donor-like Z n C u + antisites are involved in the formation of V C u − − Z n C u + complex making C u Z n − dominant and providing p-type conductivity even for Cu-poor/Zn-rich composition. However, our calculation reveals that the hole concentration is almost insensitive to the variation of the chemical composition within the composition region of the single-phase CZTS due to nearly constant concentration of dominant charged defects. The calculations for the full equilibrium and quenching indicate that hole concentration is strongly dependent on the annealing temperature and decreases substantially after the drastic cooling. This means that the precise control of annealing temperature and post-annealing cooling rate are critical for tuning the electrical properties of CZTS.
doi_str_mv 10.1063/1.4994689
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_4994689</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2116100405</sourcerecordid><originalsourceid>FETCH-LOGICAL-c433t-25cbf97e74ce6547ee822cc7bdbed3e851c5978610a652a54219a9de755864f03</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhiMEEkvLgX9giROItLZjJza31fLRSiv10MKBi-U4k42rrJ36o4h_j8uuWiEkTqOZeebVvDNV9YbgM4Lb5pycMSlZK-SzakWwkHXHOX5erTCmpBayky-rVzHeYkyIaOSqShs9mzzrZL1DfkSLty6hAUYwCRnvDLgUDl3r0CbTH-7aXbOP6NJFu5tSLOXkUZoATSWvE-wXKAM5AIK7bGfbB5v3SLsB3WVwZrJud1q9GPUc4fUxnlTfvny-2VzU26uvl5v1tjasaVJNuelH2UHHDLScdQCCUmO6fuhhaEBwYrjsREuwbjnVnFEitRygWBYtG3FzUn046MafsOReLcHudfilvLbqk_2-Vj7sVM6qaahgouDvDvik57_Yi_VWPdQwlbghhN2Twr49sEvwxVdM6tbn4IobRQkpK2GG-ZOiCT7GAOOjLMHq4V-KqOO_Cvv-uKyx6c_FH-F7H55AtQzj_-B_lX8D6rij7Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2116100405</pqid></control><display><type>article</type><title>Calculation of point defect concentration in Cu2ZnSnS4: Insights into the high-temperature equilibrium and quenching</title><source>American Institute of Physics (AIP) Journals</source><source>Alma/SFX Local Collection</source><source>SWEPUB Freely available online</source><creator>Kosyak, V. ; Postnikov, A. V. ; Scragg, J. ; Scarpulla, M. A. ; Platzer-Björkman, C.</creator><creatorcontrib>Kosyak, V. ; Postnikov, A. V. ; Scragg, J. ; Scarpulla, M. A. ; Platzer-Björkman, C.</creatorcontrib><description>Herein, we study the native point defect equilibrium in Cu2ZnSnS4 (CZTS) by applying a statistical thermodynamic model. The stable chemical-potential space (SCPS) of CZTS at an elevated temperature was estimated directly, on the basis of deviations from stoichiometry calculated for the different combinations of chemical potential of the components. We show that the SCPS is narrow due to high concentration of V C u − − Z n C u + complex which is dominant over other complexes and isolated defects. The CZTS was found to have p-type conductivity for both stoichiometric and Cu-poor/Zn-rich composition. It is established that the reason for this is that the majority of donor-like Z n C u + antisites are involved in the formation of V C u − − Z n C u + complex making C u Z n − dominant and providing p-type conductivity even for Cu-poor/Zn-rich composition. However, our calculation reveals that the hole concentration is almost insensitive to the variation of the chemical composition within the composition region of the single-phase CZTS due to nearly constant concentration of dominant charged defects. The calculations for the full equilibrium and quenching indicate that hole concentration is strongly dependent on the annealing temperature and decreases substantially after the drastic cooling. This means that the precise control of annealing temperature and post-annealing cooling rate are critical for tuning the electrical properties of CZTS.</description><identifier>ISSN: 0021-8979</identifier><identifier>ISSN: 1089-7550</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.4994689</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Annealing ; Applied physics ; Chemical composition ; Chemical potential ; Condensed Matter ; Cooling rate ; Copper ; Defects ; Electrical properties ; Electrical resistivity ; Equilibrium ; High temperature ; Materials Science ; Organic chemistry ; Physics ; Point defects ; Quenching ; Stoichiometry ; Temperature dependence ; Thermodynamic models ; Zinc</subject><ispartof>Journal of applied physics, 2017-07, Vol.122 (3)</ispartof><rights>Author(s)</rights><rights>2017 Author(s). Published by AIP Publishing.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c433t-25cbf97e74ce6547ee822cc7bdbed3e851c5978610a652a54219a9de755864f03</citedby><cites>FETCH-LOGICAL-c433t-25cbf97e74ce6547ee822cc7bdbed3e851c5978610a652a54219a9de755864f03</cites><orcidid>0000-0002-6554-9673 ; 0000-0001-9203-6235</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/1.4994689$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,550,776,780,790,881,4498,27901,27902,76127</link.rule.ids><backlink>$$Uhttps://hal.univ-lorraine.fr/hal-02903114$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-332848$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Kosyak, V.</creatorcontrib><creatorcontrib>Postnikov, A. V.</creatorcontrib><creatorcontrib>Scragg, J.</creatorcontrib><creatorcontrib>Scarpulla, M. A.</creatorcontrib><creatorcontrib>Platzer-Björkman, C.</creatorcontrib><title>Calculation of point defect concentration in Cu2ZnSnS4: Insights into the high-temperature equilibrium and quenching</title><title>Journal of applied physics</title><description>Herein, we study the native point defect equilibrium in Cu2ZnSnS4 (CZTS) by applying a statistical thermodynamic model. The stable chemical-potential space (SCPS) of CZTS at an elevated temperature was estimated directly, on the basis of deviations from stoichiometry calculated for the different combinations of chemical potential of the components. We show that the SCPS is narrow due to high concentration of V C u − − Z n C u + complex which is dominant over other complexes and isolated defects. The CZTS was found to have p-type conductivity for both stoichiometric and Cu-poor/Zn-rich composition. It is established that the reason for this is that the majority of donor-like Z n C u + antisites are involved in the formation of V C u − − Z n C u + complex making C u Z n − dominant and providing p-type conductivity even for Cu-poor/Zn-rich composition. However, our calculation reveals that the hole concentration is almost insensitive to the variation of the chemical composition within the composition region of the single-phase CZTS due to nearly constant concentration of dominant charged defects. The calculations for the full equilibrium and quenching indicate that hole concentration is strongly dependent on the annealing temperature and decreases substantially after the drastic cooling. This means that the precise control of annealing temperature and post-annealing cooling rate are critical for tuning the electrical properties of CZTS.</description><subject>Annealing</subject><subject>Applied physics</subject><subject>Chemical composition</subject><subject>Chemical potential</subject><subject>Condensed Matter</subject><subject>Cooling rate</subject><subject>Copper</subject><subject>Defects</subject><subject>Electrical properties</subject><subject>Electrical resistivity</subject><subject>Equilibrium</subject><subject>High temperature</subject><subject>Materials Science</subject><subject>Organic chemistry</subject><subject>Physics</subject><subject>Point defects</subject><subject>Quenching</subject><subject>Stoichiometry</subject><subject>Temperature dependence</subject><subject>Thermodynamic models</subject><subject>Zinc</subject><issn>0021-8979</issn><issn>1089-7550</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>D8T</sourceid><recordid>eNp9kU1v1DAQhiMEEkvLgX9giROItLZjJza31fLRSiv10MKBi-U4k42rrJ36o4h_j8uuWiEkTqOZeebVvDNV9YbgM4Lb5pycMSlZK-SzakWwkHXHOX5erTCmpBayky-rVzHeYkyIaOSqShs9mzzrZL1DfkSLty6hAUYwCRnvDLgUDl3r0CbTH-7aXbOP6NJFu5tSLOXkUZoATSWvE-wXKAM5AIK7bGfbB5v3SLsB3WVwZrJud1q9GPUc4fUxnlTfvny-2VzU26uvl5v1tjasaVJNuelH2UHHDLScdQCCUmO6fuhhaEBwYrjsREuwbjnVnFEitRygWBYtG3FzUn046MafsOReLcHudfilvLbqk_2-Vj7sVM6qaahgouDvDvik57_Yi_VWPdQwlbghhN2Twr49sEvwxVdM6tbn4IobRQkpK2GG-ZOiCT7GAOOjLMHq4V-KqOO_Cvv-uKyx6c_FH-F7H55AtQzj_-B_lX8D6rij7Q</recordid><startdate>20170721</startdate><enddate>20170721</enddate><creator>Kosyak, V.</creator><creator>Postnikov, A. V.</creator><creator>Scragg, J.</creator><creator>Scarpulla, M. A.</creator><creator>Platzer-Björkman, C.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><scope>ACNBI</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>DF2</scope><scope>ZZAVC</scope><orcidid>https://orcid.org/0000-0002-6554-9673</orcidid><orcidid>https://orcid.org/0000-0001-9203-6235</orcidid></search><sort><creationdate>20170721</creationdate><title>Calculation of point defect concentration in Cu2ZnSnS4: Insights into the high-temperature equilibrium and quenching</title><author>Kosyak, V. ; Postnikov, A. V. ; Scragg, J. ; Scarpulla, M. A. ; Platzer-Björkman, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c433t-25cbf97e74ce6547ee822cc7bdbed3e851c5978610a652a54219a9de755864f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Annealing</topic><topic>Applied physics</topic><topic>Chemical composition</topic><topic>Chemical potential</topic><topic>Condensed Matter</topic><topic>Cooling rate</topic><topic>Copper</topic><topic>Defects</topic><topic>Electrical properties</topic><topic>Electrical resistivity</topic><topic>Equilibrium</topic><topic>High temperature</topic><topic>Materials Science</topic><topic>Organic chemistry</topic><topic>Physics</topic><topic>Point defects</topic><topic>Quenching</topic><topic>Stoichiometry</topic><topic>Temperature dependence</topic><topic>Thermodynamic models</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kosyak, V.</creatorcontrib><creatorcontrib>Postnikov, A. V.</creatorcontrib><creatorcontrib>Scragg, J.</creatorcontrib><creatorcontrib>Scarpulla, M. A.</creatorcontrib><creatorcontrib>Platzer-Björkman, C.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>SWEPUB Uppsala universitet full text</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Uppsala universitet</collection><collection>SwePub Articles full text</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kosyak, V.</au><au>Postnikov, A. V.</au><au>Scragg, J.</au><au>Scarpulla, M. A.</au><au>Platzer-Björkman, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Calculation of point defect concentration in Cu2ZnSnS4: Insights into the high-temperature equilibrium and quenching</atitle><jtitle>Journal of applied physics</jtitle><date>2017-07-21</date><risdate>2017</risdate><volume>122</volume><issue>3</issue><issn>0021-8979</issn><issn>1089-7550</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>Herein, we study the native point defect equilibrium in Cu2ZnSnS4 (CZTS) by applying a statistical thermodynamic model. The stable chemical-potential space (SCPS) of CZTS at an elevated temperature was estimated directly, on the basis of deviations from stoichiometry calculated for the different combinations of chemical potential of the components. We show that the SCPS is narrow due to high concentration of V C u − − Z n C u + complex which is dominant over other complexes and isolated defects. The CZTS was found to have p-type conductivity for both stoichiometric and Cu-poor/Zn-rich composition. It is established that the reason for this is that the majority of donor-like Z n C u + antisites are involved in the formation of V C u − − Z n C u + complex making C u Z n − dominant and providing p-type conductivity even for Cu-poor/Zn-rich composition. However, our calculation reveals that the hole concentration is almost insensitive to the variation of the chemical composition within the composition region of the single-phase CZTS due to nearly constant concentration of dominant charged defects. The calculations for the full equilibrium and quenching indicate that hole concentration is strongly dependent on the annealing temperature and decreases substantially after the drastic cooling. This means that the precise control of annealing temperature and post-annealing cooling rate are critical for tuning the electrical properties of CZTS.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4994689</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-6554-9673</orcidid><orcidid>https://orcid.org/0000-0001-9203-6235</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2017-07, Vol.122 (3)
issn 0021-8979
1089-7550
1089-7550
language eng
recordid cdi_scitation_primary_10_1063_1_4994689
source American Institute of Physics (AIP) Journals; Alma/SFX Local Collection; SWEPUB Freely available online
subjects Annealing
Applied physics
Chemical composition
Chemical potential
Condensed Matter
Cooling rate
Copper
Defects
Electrical properties
Electrical resistivity
Equilibrium
High temperature
Materials Science
Organic chemistry
Physics
Point defects
Quenching
Stoichiometry
Temperature dependence
Thermodynamic models
Zinc
title Calculation of point defect concentration in Cu2ZnSnS4: Insights into the high-temperature equilibrium and quenching
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T11%3A25%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Calculation%20of%20point%20defect%20concentration%20in%20Cu2ZnSnS4:%20Insights%20into%20the%20high-temperature%20equilibrium%20and%20quenching&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Kosyak,%20V.&rft.date=2017-07-21&rft.volume=122&rft.issue=3&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/1.4994689&rft_dat=%3Cproquest_scita%3E2116100405%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2116100405&rft_id=info:pmid/&rfr_iscdi=true