Continuous version of the Kellog algorithm and its Monte Carlo realization

Some new stochastic algorithms are suggested to determine the minimal eigenvalue for the first boundary value problem for Laplace operator.

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Sipin, Alexander S., Zeifman, Alexander
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 1863
creator Sipin, Alexander S.
Zeifman, Alexander
description Some new stochastic algorithms are suggested to determine the minimal eigenvalue for the first boundary value problem for Laplace operator.
doi_str_mv 10.1063/1.4992273
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_4992273</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2116100544</sourcerecordid><originalsourceid>FETCH-LOGICAL-p253t-c9bc4de6a54597e87d4f86b3bb90b5a8ed352cbcce38baccf5455b8da08df9cf3</originalsourceid><addsrcrecordid>eNp90MtKxDAUBuAgCtbRhW8QcCd0TJqkbZZSvI-4UXAXcutMhk5Tk3RAn97qDLhzdTbff87hB-AcozlGJbnCc8p5UVTkAGSYMZxXJS4PQYYQp3lByfsxOIlxjVDBq6rOwGPj--T60Y8Rbm2IzvfQtzCtLHyyXeeXUHZLH1xabaDsDXQpwucpYmEjQ-dhsLJzXzJNuVNw1Mou2rP9nIG325vX5j5fvNw9NNeLfCgYSbnmSlNjS8ko45WtK0PbulREKY4Uk7U1hBVaaW1JraTW7eSYqo1EtWm5bskMXOz2DsF_jDYmsfZj6KeTosC4xAgxSid1uVNRu_T7nxiC28jwKTASP10JLPZd_Ye3PvxBMZiWfANRlWuv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2116100544</pqid></control><display><type>conference_proceeding</type><title>Continuous version of the Kellog algorithm and its Monte Carlo realization</title><source>AIP Journals Complete</source><creator>Sipin, Alexander S. ; Zeifman, Alexander</creator><contributor>Simos, Theodore ; Tsitouras, Charalambos</contributor><creatorcontrib>Sipin, Alexander S. ; Zeifman, Alexander ; Simos, Theodore ; Tsitouras, Charalambos</creatorcontrib><description>Some new stochastic algorithms are suggested to determine the minimal eigenvalue for the first boundary value problem for Laplace operator.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.4992273</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Algorithms ; Boundary value problems ; Eigenvalues</subject><ispartof>AIP conference proceedings, 2017, Vol.1863 (1)</ispartof><rights>Author(s)</rights><rights>2017 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/1.4992273$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,778,782,787,788,792,4500,23913,23914,25123,27907,27908,76135</link.rule.ids></links><search><contributor>Simos, Theodore</contributor><contributor>Tsitouras, Charalambos</contributor><creatorcontrib>Sipin, Alexander S.</creatorcontrib><creatorcontrib>Zeifman, Alexander</creatorcontrib><title>Continuous version of the Kellog algorithm and its Monte Carlo realization</title><title>AIP conference proceedings</title><description>Some new stochastic algorithms are suggested to determine the minimal eigenvalue for the first boundary value problem for Laplace operator.</description><subject>Algorithms</subject><subject>Boundary value problems</subject><subject>Eigenvalues</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2017</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp90MtKxDAUBuAgCtbRhW8QcCd0TJqkbZZSvI-4UXAXcutMhk5Tk3RAn97qDLhzdTbff87hB-AcozlGJbnCc8p5UVTkAGSYMZxXJS4PQYYQp3lByfsxOIlxjVDBq6rOwGPj--T60Y8Rbm2IzvfQtzCtLHyyXeeXUHZLH1xabaDsDXQpwucpYmEjQ-dhsLJzXzJNuVNw1Mou2rP9nIG325vX5j5fvNw9NNeLfCgYSbnmSlNjS8ko45WtK0PbulREKY4Uk7U1hBVaaW1JraTW7eSYqo1EtWm5bskMXOz2DsF_jDYmsfZj6KeTosC4xAgxSid1uVNRu_T7nxiC28jwKTASP10JLPZd_Ye3PvxBMZiWfANRlWuv</recordid><startdate>20170721</startdate><enddate>20170721</enddate><creator>Sipin, Alexander S.</creator><creator>Zeifman, Alexander</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20170721</creationdate><title>Continuous version of the Kellog algorithm and its Monte Carlo realization</title><author>Sipin, Alexander S. ; Zeifman, Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p253t-c9bc4de6a54597e87d4f86b3bb90b5a8ed352cbcce38baccf5455b8da08df9cf3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Boundary value problems</topic><topic>Eigenvalues</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sipin, Alexander S.</creatorcontrib><creatorcontrib>Zeifman, Alexander</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sipin, Alexander S.</au><au>Zeifman, Alexander</au><au>Simos, Theodore</au><au>Tsitouras, Charalambos</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Continuous version of the Kellog algorithm and its Monte Carlo realization</atitle><btitle>AIP conference proceedings</btitle><date>2017-07-21</date><risdate>2017</risdate><volume>1863</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Some new stochastic algorithms are suggested to determine the minimal eigenvalue for the first boundary value problem for Laplace operator.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4992273</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2017, Vol.1863 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_scitation_primary_10_1063_1_4992273
source AIP Journals Complete
subjects Algorithms
Boundary value problems
Eigenvalues
title Continuous version of the Kellog algorithm and its Monte Carlo realization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T09%3A27%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Continuous%20version%20of%20the%20Kellog%20algorithm%20and%20its%20Monte%20Carlo%20realization&rft.btitle=AIP%20conference%20proceedings&rft.au=Sipin,%20Alexander%20S.&rft.date=2017-07-21&rft.volume=1863&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/1.4992273&rft_dat=%3Cproquest_scita%3E2116100544%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2116100544&rft_id=info:pmid/&rfr_iscdi=true