Continuous version of the Kellog algorithm and its Monte Carlo realization
Some new stochastic algorithms are suggested to determine the minimal eigenvalue for the first boundary value problem for Laplace operator.
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 1863 |
creator | Sipin, Alexander S. Zeifman, Alexander |
description | Some new stochastic algorithms are suggested to determine the minimal eigenvalue for the first boundary value problem for Laplace operator. |
doi_str_mv | 10.1063/1.4992273 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_4992273</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2116100544</sourcerecordid><originalsourceid>FETCH-LOGICAL-p253t-c9bc4de6a54597e87d4f86b3bb90b5a8ed352cbcce38baccf5455b8da08df9cf3</originalsourceid><addsrcrecordid>eNp90MtKxDAUBuAgCtbRhW8QcCd0TJqkbZZSvI-4UXAXcutMhk5Tk3RAn97qDLhzdTbff87hB-AcozlGJbnCc8p5UVTkAGSYMZxXJS4PQYYQp3lByfsxOIlxjVDBq6rOwGPj--T60Y8Rbm2IzvfQtzCtLHyyXeeXUHZLH1xabaDsDXQpwucpYmEjQ-dhsLJzXzJNuVNw1Mou2rP9nIG325vX5j5fvNw9NNeLfCgYSbnmSlNjS8ko45WtK0PbulREKY4Uk7U1hBVaaW1JraTW7eSYqo1EtWm5bskMXOz2DsF_jDYmsfZj6KeTosC4xAgxSid1uVNRu_T7nxiC28jwKTASP10JLPZd_Ye3PvxBMZiWfANRlWuv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2116100544</pqid></control><display><type>conference_proceeding</type><title>Continuous version of the Kellog algorithm and its Monte Carlo realization</title><source>AIP Journals Complete</source><creator>Sipin, Alexander S. ; Zeifman, Alexander</creator><contributor>Simos, Theodore ; Tsitouras, Charalambos</contributor><creatorcontrib>Sipin, Alexander S. ; Zeifman, Alexander ; Simos, Theodore ; Tsitouras, Charalambos</creatorcontrib><description>Some new stochastic algorithms are suggested to determine the minimal eigenvalue for the first boundary value problem for Laplace operator.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.4992273</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Algorithms ; Boundary value problems ; Eigenvalues</subject><ispartof>AIP conference proceedings, 2017, Vol.1863 (1)</ispartof><rights>Author(s)</rights><rights>2017 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/1.4992273$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,778,782,787,788,792,4500,23913,23914,25123,27907,27908,76135</link.rule.ids></links><search><contributor>Simos, Theodore</contributor><contributor>Tsitouras, Charalambos</contributor><creatorcontrib>Sipin, Alexander S.</creatorcontrib><creatorcontrib>Zeifman, Alexander</creatorcontrib><title>Continuous version of the Kellog algorithm and its Monte Carlo realization</title><title>AIP conference proceedings</title><description>Some new stochastic algorithms are suggested to determine the minimal eigenvalue for the first boundary value problem for Laplace operator.</description><subject>Algorithms</subject><subject>Boundary value problems</subject><subject>Eigenvalues</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2017</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp90MtKxDAUBuAgCtbRhW8QcCd0TJqkbZZSvI-4UXAXcutMhk5Tk3RAn97qDLhzdTbff87hB-AcozlGJbnCc8p5UVTkAGSYMZxXJS4PQYYQp3lByfsxOIlxjVDBq6rOwGPj--T60Y8Rbm2IzvfQtzCtLHyyXeeXUHZLH1xabaDsDXQpwucpYmEjQ-dhsLJzXzJNuVNw1Mou2rP9nIG325vX5j5fvNw9NNeLfCgYSbnmSlNjS8ko45WtK0PbulREKY4Uk7U1hBVaaW1JraTW7eSYqo1EtWm5bskMXOz2DsF_jDYmsfZj6KeTosC4xAgxSid1uVNRu_T7nxiC28jwKTASP10JLPZd_Ye3PvxBMZiWfANRlWuv</recordid><startdate>20170721</startdate><enddate>20170721</enddate><creator>Sipin, Alexander S.</creator><creator>Zeifman, Alexander</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20170721</creationdate><title>Continuous version of the Kellog algorithm and its Monte Carlo realization</title><author>Sipin, Alexander S. ; Zeifman, Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p253t-c9bc4de6a54597e87d4f86b3bb90b5a8ed352cbcce38baccf5455b8da08df9cf3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Boundary value problems</topic><topic>Eigenvalues</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sipin, Alexander S.</creatorcontrib><creatorcontrib>Zeifman, Alexander</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sipin, Alexander S.</au><au>Zeifman, Alexander</au><au>Simos, Theodore</au><au>Tsitouras, Charalambos</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Continuous version of the Kellog algorithm and its Monte Carlo realization</atitle><btitle>AIP conference proceedings</btitle><date>2017-07-21</date><risdate>2017</risdate><volume>1863</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Some new stochastic algorithms are suggested to determine the minimal eigenvalue for the first boundary value problem for Laplace operator.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4992273</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2017, Vol.1863 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_scitation_primary_10_1063_1_4992273 |
source | AIP Journals Complete |
subjects | Algorithms Boundary value problems Eigenvalues |
title | Continuous version of the Kellog algorithm and its Monte Carlo realization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T09%3A27%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Continuous%20version%20of%20the%20Kellog%20algorithm%20and%20its%20Monte%20Carlo%20realization&rft.btitle=AIP%20conference%20proceedings&rft.au=Sipin,%20Alexander%20S.&rft.date=2017-07-21&rft.volume=1863&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/1.4992273&rft_dat=%3Cproquest_scita%3E2116100544%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2116100544&rft_id=info:pmid/&rfr_iscdi=true |