Hysteresis compensation of the Prandtl-Ishlinskii model for piezoelectric actuators using modified particle swarm optimization with chaotic map

Piezoelectric actuators invariably exhibit hysteresis nonlinearities that tend to become significant under the open-loop condition and could cause oscillations and errors in nanometer-positioning tasks. Chaotic map modified particle swarm optimization (MPSO) is proposed and implemented to identify t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Review of scientific instruments 2017-07, Vol.88 (7), p.075003-075003
Hauptverfasser: Long, Zhili, Wang, Rui, Fang, Jiwen, Dai, Xufei, Li, Zuohua
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 075003
container_issue 7
container_start_page 075003
container_title Review of scientific instruments
container_volume 88
creator Long, Zhili
Wang, Rui
Fang, Jiwen
Dai, Xufei
Li, Zuohua
description Piezoelectric actuators invariably exhibit hysteresis nonlinearities that tend to become significant under the open-loop condition and could cause oscillations and errors in nanometer-positioning tasks. Chaotic map modified particle swarm optimization (MPSO) is proposed and implemented to identify the Prandtl-Ishlinskii model for piezoelectric actuators. Hysteresis compensation is attained through application of an inverse Prandtl-Ishlinskii model, in which the parameters are formulated based on the original model with chaotic map MPSO. To strengthen the diversity and improve the searching ergodicity of the swarm, an initial method of adaptive inertia weight based on a chaotic map is proposed. To compare and prove that the swarm’s convergence occurs before stochastic initialization and to attain an optimal particle swarm optimization algorithm, the parameters of a proportional-integral-derivative controller are searched using self-tuning, and the simulated results are used to verify the search effectiveness of chaotic map MPSO. The results show that chaotic map MPSO is superior to its competitors for identifying the Prandtl-Ishlinskii model and that the inverse Prandtl-Ishlinskii model can provide hysteresis compensation under different conditions in a simple and effective manner.
doi_str_mv 10.1063/1.4991854
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_4991854</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1925513838</sourcerecordid><originalsourceid>FETCH-LOGICAL-c320t-205ed9458be38a29e8756082febc97d1eb5bd41ec79a017d5c340b97513e49513</originalsourceid><addsrcrecordid>eNp90M9O3DAQBnALFZXt0gMvgHwsSKF2Yif2sVrxT0JqD-UcOc6EHUji1OMIwUvwyg3dbY_1SJ7LT99IH2MnUlxIURZf5YWyVhqtDthKCmOzqsyLD2wlRKGyslLmiH0iehTL01J-ZEe5qUqljF2xt5sXShCBkLgPwwQjuYRh5KHjaQv8R3Rjm_rslrY9jvSEyIfQQs-7EPmE8BqgB58ieu58ml0KkfhMOD68O-wQWj65mND3wOnZxYGHKeGAr7szz5i23G9dWAQf3HTMDjvXE3ze7zW7v7r8ubnJ7r5f326-3WW-yEXKcqGhtUqbBgrjcgum0qUweQeNt1UrodFNqyT4yjohq1b7QonGVloWoOzyr9mXXe4Uw68ZKNUDkoe-dyOEmWppc70ws8yane2oj4EoQldPEQcXX2op6vf-a1nv-1_s6T52bgZo_8m_hS_gfAfIY_pTwX_SfgNEwJC7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1925513838</pqid></control><display><type>article</type><title>Hysteresis compensation of the Prandtl-Ishlinskii model for piezoelectric actuators using modified particle swarm optimization with chaotic map</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Long, Zhili ; Wang, Rui ; Fang, Jiwen ; Dai, Xufei ; Li, Zuohua</creator><creatorcontrib>Long, Zhili ; Wang, Rui ; Fang, Jiwen ; Dai, Xufei ; Li, Zuohua</creatorcontrib><description>Piezoelectric actuators invariably exhibit hysteresis nonlinearities that tend to become significant under the open-loop condition and could cause oscillations and errors in nanometer-positioning tasks. Chaotic map modified particle swarm optimization (MPSO) is proposed and implemented to identify the Prandtl-Ishlinskii model for piezoelectric actuators. Hysteresis compensation is attained through application of an inverse Prandtl-Ishlinskii model, in which the parameters are formulated based on the original model with chaotic map MPSO. To strengthen the diversity and improve the searching ergodicity of the swarm, an initial method of adaptive inertia weight based on a chaotic map is proposed. To compare and prove that the swarm’s convergence occurs before stochastic initialization and to attain an optimal particle swarm optimization algorithm, the parameters of a proportional-integral-derivative controller are searched using self-tuning, and the simulated results are used to verify the search effectiveness of chaotic map MPSO. The results show that chaotic map MPSO is superior to its competitors for identifying the Prandtl-Ishlinskii model and that the inverse Prandtl-Ishlinskii model can provide hysteresis compensation under different conditions in a simple and effective manner.</description><identifier>ISSN: 0034-6748</identifier><identifier>EISSN: 1089-7623</identifier><identifier>DOI: 10.1063/1.4991854</identifier><identifier>PMID: 28764489</identifier><identifier>CODEN: RSINAK</identifier><language>eng</language><publisher>United States</publisher><ispartof>Review of scientific instruments, 2017-07, Vol.88 (7), p.075003-075003</ispartof><rights>Author(s)</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c320t-205ed9458be38a29e8756082febc97d1eb5bd41ec79a017d5c340b97513e49513</citedby><cites>FETCH-LOGICAL-c320t-205ed9458be38a29e8756082febc97d1eb5bd41ec79a017d5c340b97513e49513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/rsi/article-lookup/doi/10.1063/1.4991854$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76127</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28764489$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Long, Zhili</creatorcontrib><creatorcontrib>Wang, Rui</creatorcontrib><creatorcontrib>Fang, Jiwen</creatorcontrib><creatorcontrib>Dai, Xufei</creatorcontrib><creatorcontrib>Li, Zuohua</creatorcontrib><title>Hysteresis compensation of the Prandtl-Ishlinskii model for piezoelectric actuators using modified particle swarm optimization with chaotic map</title><title>Review of scientific instruments</title><addtitle>Rev Sci Instrum</addtitle><description>Piezoelectric actuators invariably exhibit hysteresis nonlinearities that tend to become significant under the open-loop condition and could cause oscillations and errors in nanometer-positioning tasks. Chaotic map modified particle swarm optimization (MPSO) is proposed and implemented to identify the Prandtl-Ishlinskii model for piezoelectric actuators. Hysteresis compensation is attained through application of an inverse Prandtl-Ishlinskii model, in which the parameters are formulated based on the original model with chaotic map MPSO. To strengthen the diversity and improve the searching ergodicity of the swarm, an initial method of adaptive inertia weight based on a chaotic map is proposed. To compare and prove that the swarm’s convergence occurs before stochastic initialization and to attain an optimal particle swarm optimization algorithm, the parameters of a proportional-integral-derivative controller are searched using self-tuning, and the simulated results are used to verify the search effectiveness of chaotic map MPSO. The results show that chaotic map MPSO is superior to its competitors for identifying the Prandtl-Ishlinskii model and that the inverse Prandtl-Ishlinskii model can provide hysteresis compensation under different conditions in a simple and effective manner.</description><issn>0034-6748</issn><issn>1089-7623</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp90M9O3DAQBnALFZXt0gMvgHwsSKF2Yif2sVrxT0JqD-UcOc6EHUji1OMIwUvwyg3dbY_1SJ7LT99IH2MnUlxIURZf5YWyVhqtDthKCmOzqsyLD2wlRKGyslLmiH0iehTL01J-ZEe5qUqljF2xt5sXShCBkLgPwwQjuYRh5KHjaQv8R3Rjm_rslrY9jvSEyIfQQs-7EPmE8BqgB58ieu58ml0KkfhMOD68O-wQWj65mND3wOnZxYGHKeGAr7szz5i23G9dWAQf3HTMDjvXE3ze7zW7v7r8ubnJ7r5f326-3WW-yEXKcqGhtUqbBgrjcgum0qUweQeNt1UrodFNqyT4yjohq1b7QonGVloWoOzyr9mXXe4Uw68ZKNUDkoe-dyOEmWppc70ws8yane2oj4EoQldPEQcXX2op6vf-a1nv-1_s6T52bgZo_8m_hS_gfAfIY_pTwX_SfgNEwJC7</recordid><startdate>201707</startdate><enddate>201707</enddate><creator>Long, Zhili</creator><creator>Wang, Rui</creator><creator>Fang, Jiwen</creator><creator>Dai, Xufei</creator><creator>Li, Zuohua</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201707</creationdate><title>Hysteresis compensation of the Prandtl-Ishlinskii model for piezoelectric actuators using modified particle swarm optimization with chaotic map</title><author>Long, Zhili ; Wang, Rui ; Fang, Jiwen ; Dai, Xufei ; Li, Zuohua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c320t-205ed9458be38a29e8756082febc97d1eb5bd41ec79a017d5c340b97513e49513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Long, Zhili</creatorcontrib><creatorcontrib>Wang, Rui</creatorcontrib><creatorcontrib>Fang, Jiwen</creatorcontrib><creatorcontrib>Dai, Xufei</creatorcontrib><creatorcontrib>Li, Zuohua</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Review of scientific instruments</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Long, Zhili</au><au>Wang, Rui</au><au>Fang, Jiwen</au><au>Dai, Xufei</au><au>Li, Zuohua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hysteresis compensation of the Prandtl-Ishlinskii model for piezoelectric actuators using modified particle swarm optimization with chaotic map</atitle><jtitle>Review of scientific instruments</jtitle><addtitle>Rev Sci Instrum</addtitle><date>2017-07</date><risdate>2017</risdate><volume>88</volume><issue>7</issue><spage>075003</spage><epage>075003</epage><pages>075003-075003</pages><issn>0034-6748</issn><eissn>1089-7623</eissn><coden>RSINAK</coden><abstract>Piezoelectric actuators invariably exhibit hysteresis nonlinearities that tend to become significant under the open-loop condition and could cause oscillations and errors in nanometer-positioning tasks. Chaotic map modified particle swarm optimization (MPSO) is proposed and implemented to identify the Prandtl-Ishlinskii model for piezoelectric actuators. Hysteresis compensation is attained through application of an inverse Prandtl-Ishlinskii model, in which the parameters are formulated based on the original model with chaotic map MPSO. To strengthen the diversity and improve the searching ergodicity of the swarm, an initial method of adaptive inertia weight based on a chaotic map is proposed. To compare and prove that the swarm’s convergence occurs before stochastic initialization and to attain an optimal particle swarm optimization algorithm, the parameters of a proportional-integral-derivative controller are searched using self-tuning, and the simulated results are used to verify the search effectiveness of chaotic map MPSO. The results show that chaotic map MPSO is superior to its competitors for identifying the Prandtl-Ishlinskii model and that the inverse Prandtl-Ishlinskii model can provide hysteresis compensation under different conditions in a simple and effective manner.</abstract><cop>United States</cop><pmid>28764489</pmid><doi>10.1063/1.4991854</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0034-6748
ispartof Review of scientific instruments, 2017-07, Vol.88 (7), p.075003-075003
issn 0034-6748
1089-7623
language eng
recordid cdi_scitation_primary_10_1063_1_4991854
source AIP Journals Complete; Alma/SFX Local Collection
title Hysteresis compensation of the Prandtl-Ishlinskii model for piezoelectric actuators using modified particle swarm optimization with chaotic map
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T18%3A24%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hysteresis%20compensation%20of%20the%20Prandtl-Ishlinskii%20model%20for%20piezoelectric%20actuators%20using%20modified%20particle%20swarm%20optimization%20with%20chaotic%20map&rft.jtitle=Review%20of%20scientific%20instruments&rft.au=Long,%20Zhili&rft.date=2017-07&rft.volume=88&rft.issue=7&rft.spage=075003&rft.epage=075003&rft.pages=075003-075003&rft.issn=0034-6748&rft.eissn=1089-7623&rft.coden=RSINAK&rft_id=info:doi/10.1063/1.4991854&rft_dat=%3Cproquest_scita%3E1925513838%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1925513838&rft_id=info:pmid/28764489&rfr_iscdi=true