Investigating magnetic proximity effects at ferrite/Pt interfaces

Spintronic devices based on pure spin currents have drawn a lot of attention during the last few years for low energy device design. One approach to generate pure spin currents is to combine a metallic or insulating ferromagnetic layer with a non-magnetic metallic layer with a large spin-orbit coupl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2017-11, Vol.111 (20), p.202401-202402
Hauptverfasser: Collet, M., Mattana, R., Moussy, J.-B., Ollefs, K., Collin, S., Deranlot, C., Anane, A., Cros, V., Petroff, F., Wilhelm, F., Rogalev, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 202402
container_issue 20
container_start_page 202401
container_title Applied physics letters
container_volume 111
creator Collet, M.
Mattana, R.
Moussy, J.-B.
Ollefs, K.
Collin, S.
Deranlot, C.
Anane, A.
Cros, V.
Petroff, F.
Wilhelm, F.
Rogalev, A.
description Spintronic devices based on pure spin currents have drawn a lot of attention during the last few years for low energy device design. One approach to generate pure spin currents is to combine a metallic or insulating ferromagnetic layer with a non-magnetic metallic layer with a large spin-orbit coupling. A recent controversy has arisen in the possible role of magnetic proximity effects at ferromagnetic/non-magnetic interfaces, which can hamper the understanding of pure spin current generation mechanisms. While magnetic proximity effects have been frequently observed at ferromagnetic metal/non-magnetic interfaces, there are only a few studies on ferromagnetic insulator/non-magnetic interfaces. Regarding the use of ferromagnetic insulators, the focus has been mainly on yttrium iron garnet (YIG). However, investigation of induced magnetic moments at YIG/Pt interfaces has engendered contradictory results. Here, we propose to study insulating ferrites for which electronic and magnetic properties can be modulated. Magnetic proximity effects have been investigated at MnFe2O4/Pt, CoFe2O4/Pt, and NiFe2O4/Pt interfaces by X-ray circular magnetic dichroism (XMCD) measurements at the Pt L3 edge. Although hybridization with Pt seems to be different among the ferrites, we do not detect any XMCD signal as the signature of an induced magnetism in Pt. We have then studied the Fe3O4 ferrite below and above the Verwey transition temperature. No XMCD signal has been measured in the insulating or conducting phase of Fe3O4. This suggests that the absence of magnetic proximity effects at ferrite/Pt interfaces is not linked to the insulating character or not of the ferrites.
doi_str_mv 10.1063/1.4987145
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_4987145</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2116025002</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-225bb8561398dcb7da88a06099a27bd5c879955d1a492bca48def277ce45c03b3</originalsourceid><addsrcrecordid>eNqdkE1LAzEQhoMoWKsH_8GCJ4VtM8nm61iK2kJBD3oO2WxSU-xuTdJi_71bKvbuaZjh4WXeB6FbwCPAnI5hVCkpoGJnaABYiJICyHM0wBjTkisGl-gqpVW_MkLpAE3m7c6lHJYmh3ZZrM2ydTnYYhO777AOeV84753NqTC58C7GkN34NRehzS56Y126RhfefCZ38zuH6P3p8W06Kxcvz_PpZFHaipNcEsLqWjIOVMnG1qIxUhrMsVKGiLphVgqlGGvAVIrU1lSycZ4IYV3FLKY1HaL7Y-6H-dSbGNYm7nVngp5NFvpww8A5Z0rsoGfvjmxf42vb99Orbhvb_j1NADgmDGNySrSxSyk6_xcLWB9satC_Nnv24cgmG3Lvqmv_B--6eAL1pvH0BwMJgao</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2116025002</pqid></control><display><type>article</type><title>Investigating magnetic proximity effects at ferrite/Pt interfaces</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Collet, M. ; Mattana, R. ; Moussy, J.-B. ; Ollefs, K. ; Collin, S. ; Deranlot, C. ; Anane, A. ; Cros, V. ; Petroff, F. ; Wilhelm, F. ; Rogalev, A.</creator><creatorcontrib>Collet, M. ; Mattana, R. ; Moussy, J.-B. ; Ollefs, K. ; Collin, S. ; Deranlot, C. ; Anane, A. ; Cros, V. ; Petroff, F. ; Wilhelm, F. ; Rogalev, A.</creatorcontrib><description>Spintronic devices based on pure spin currents have drawn a lot of attention during the last few years for low energy device design. One approach to generate pure spin currents is to combine a metallic or insulating ferromagnetic layer with a non-magnetic metallic layer with a large spin-orbit coupling. A recent controversy has arisen in the possible role of magnetic proximity effects at ferromagnetic/non-magnetic interfaces, which can hamper the understanding of pure spin current generation mechanisms. While magnetic proximity effects have been frequently observed at ferromagnetic metal/non-magnetic interfaces, there are only a few studies on ferromagnetic insulator/non-magnetic interfaces. Regarding the use of ferromagnetic insulators, the focus has been mainly on yttrium iron garnet (YIG). However, investigation of induced magnetic moments at YIG/Pt interfaces has engendered contradictory results. Here, we propose to study insulating ferrites for which electronic and magnetic properties can be modulated. Magnetic proximity effects have been investigated at MnFe2O4/Pt, CoFe2O4/Pt, and NiFe2O4/Pt interfaces by X-ray circular magnetic dichroism (XMCD) measurements at the Pt L3 edge. Although hybridization with Pt seems to be different among the ferrites, we do not detect any XMCD signal as the signature of an induced magnetism in Pt. We have then studied the Fe3O4 ferrite below and above the Verwey transition temperature. No XMCD signal has been measured in the insulating or conducting phase of Fe3O4. This suggests that the absence of magnetic proximity effects at ferrite/Pt interfaces is not linked to the insulating character or not of the ferrites.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.4987145</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Cobalt ferrites ; Dichroism ; Drawing and ironing ; Ferromagnetism ; Insulators ; Investigations ; Iron oxides ; Magnetic moments ; Magnetic properties ; Magnetism ; Nickel ferrites ; Physics ; Proximity ; Spin-orbit interactions ; Spintronics ; Transition temperature ; Yttrium ; Yttrium-iron garnet</subject><ispartof>Applied physics letters, 2017-11, Vol.111 (20), p.202401-202402</ispartof><rights>Author(s)</rights><rights>2017 Author(s). Published by AIP Publishing.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-225bb8561398dcb7da88a06099a27bd5c879955d1a492bca48def277ce45c03b3</citedby><cites>FETCH-LOGICAL-c462t-225bb8561398dcb7da88a06099a27bd5c879955d1a492bca48def277ce45c03b3</cites><orcidid>0000-0001-5396-6165 ; 0000-0002-2753-9984 ; 0000-0002-8815-6434</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/1.4987145$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,315,781,785,795,886,4513,27929,27930,76389</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01666597$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Collet, M.</creatorcontrib><creatorcontrib>Mattana, R.</creatorcontrib><creatorcontrib>Moussy, J.-B.</creatorcontrib><creatorcontrib>Ollefs, K.</creatorcontrib><creatorcontrib>Collin, S.</creatorcontrib><creatorcontrib>Deranlot, C.</creatorcontrib><creatorcontrib>Anane, A.</creatorcontrib><creatorcontrib>Cros, V.</creatorcontrib><creatorcontrib>Petroff, F.</creatorcontrib><creatorcontrib>Wilhelm, F.</creatorcontrib><creatorcontrib>Rogalev, A.</creatorcontrib><title>Investigating magnetic proximity effects at ferrite/Pt interfaces</title><title>Applied physics letters</title><description>Spintronic devices based on pure spin currents have drawn a lot of attention during the last few years for low energy device design. One approach to generate pure spin currents is to combine a metallic or insulating ferromagnetic layer with a non-magnetic metallic layer with a large spin-orbit coupling. A recent controversy has arisen in the possible role of magnetic proximity effects at ferromagnetic/non-magnetic interfaces, which can hamper the understanding of pure spin current generation mechanisms. While magnetic proximity effects have been frequently observed at ferromagnetic metal/non-magnetic interfaces, there are only a few studies on ferromagnetic insulator/non-magnetic interfaces. Regarding the use of ferromagnetic insulators, the focus has been mainly on yttrium iron garnet (YIG). However, investigation of induced magnetic moments at YIG/Pt interfaces has engendered contradictory results. Here, we propose to study insulating ferrites for which electronic and magnetic properties can be modulated. Magnetic proximity effects have been investigated at MnFe2O4/Pt, CoFe2O4/Pt, and NiFe2O4/Pt interfaces by X-ray circular magnetic dichroism (XMCD) measurements at the Pt L3 edge. Although hybridization with Pt seems to be different among the ferrites, we do not detect any XMCD signal as the signature of an induced magnetism in Pt. We have then studied the Fe3O4 ferrite below and above the Verwey transition temperature. No XMCD signal has been measured in the insulating or conducting phase of Fe3O4. This suggests that the absence of magnetic proximity effects at ferrite/Pt interfaces is not linked to the insulating character or not of the ferrites.</description><subject>Applied physics</subject><subject>Cobalt ferrites</subject><subject>Dichroism</subject><subject>Drawing and ironing</subject><subject>Ferromagnetism</subject><subject>Insulators</subject><subject>Investigations</subject><subject>Iron oxides</subject><subject>Magnetic moments</subject><subject>Magnetic properties</subject><subject>Magnetism</subject><subject>Nickel ferrites</subject><subject>Physics</subject><subject>Proximity</subject><subject>Spin-orbit interactions</subject><subject>Spintronics</subject><subject>Transition temperature</subject><subject>Yttrium</subject><subject>Yttrium-iron garnet</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqdkE1LAzEQhoMoWKsH_8GCJ4VtM8nm61iK2kJBD3oO2WxSU-xuTdJi_71bKvbuaZjh4WXeB6FbwCPAnI5hVCkpoGJnaABYiJICyHM0wBjTkisGl-gqpVW_MkLpAE3m7c6lHJYmh3ZZrM2ydTnYYhO777AOeV84753NqTC58C7GkN34NRehzS56Y126RhfefCZ38zuH6P3p8W06Kxcvz_PpZFHaipNcEsLqWjIOVMnG1qIxUhrMsVKGiLphVgqlGGvAVIrU1lSycZ4IYV3FLKY1HaL7Y-6H-dSbGNYm7nVngp5NFvpww8A5Z0rsoGfvjmxf42vb99Orbhvb_j1NADgmDGNySrSxSyk6_xcLWB9satC_Nnv24cgmG3Lvqmv_B--6eAL1pvH0BwMJgao</recordid><startdate>20171113</startdate><enddate>20171113</enddate><creator>Collet, M.</creator><creator>Mattana, R.</creator><creator>Moussy, J.-B.</creator><creator>Ollefs, K.</creator><creator>Collin, S.</creator><creator>Deranlot, C.</creator><creator>Anane, A.</creator><creator>Cros, V.</creator><creator>Petroff, F.</creator><creator>Wilhelm, F.</creator><creator>Rogalev, A.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-5396-6165</orcidid><orcidid>https://orcid.org/0000-0002-2753-9984</orcidid><orcidid>https://orcid.org/0000-0002-8815-6434</orcidid></search><sort><creationdate>20171113</creationdate><title>Investigating magnetic proximity effects at ferrite/Pt interfaces</title><author>Collet, M. ; Mattana, R. ; Moussy, J.-B. ; Ollefs, K. ; Collin, S. ; Deranlot, C. ; Anane, A. ; Cros, V. ; Petroff, F. ; Wilhelm, F. ; Rogalev, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-225bb8561398dcb7da88a06099a27bd5c879955d1a492bca48def277ce45c03b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Applied physics</topic><topic>Cobalt ferrites</topic><topic>Dichroism</topic><topic>Drawing and ironing</topic><topic>Ferromagnetism</topic><topic>Insulators</topic><topic>Investigations</topic><topic>Iron oxides</topic><topic>Magnetic moments</topic><topic>Magnetic properties</topic><topic>Magnetism</topic><topic>Nickel ferrites</topic><topic>Physics</topic><topic>Proximity</topic><topic>Spin-orbit interactions</topic><topic>Spintronics</topic><topic>Transition temperature</topic><topic>Yttrium</topic><topic>Yttrium-iron garnet</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Collet, M.</creatorcontrib><creatorcontrib>Mattana, R.</creatorcontrib><creatorcontrib>Moussy, J.-B.</creatorcontrib><creatorcontrib>Ollefs, K.</creatorcontrib><creatorcontrib>Collin, S.</creatorcontrib><creatorcontrib>Deranlot, C.</creatorcontrib><creatorcontrib>Anane, A.</creatorcontrib><creatorcontrib>Cros, V.</creatorcontrib><creatorcontrib>Petroff, F.</creatorcontrib><creatorcontrib>Wilhelm, F.</creatorcontrib><creatorcontrib>Rogalev, A.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Collet, M.</au><au>Mattana, R.</au><au>Moussy, J.-B.</au><au>Ollefs, K.</au><au>Collin, S.</au><au>Deranlot, C.</au><au>Anane, A.</au><au>Cros, V.</au><au>Petroff, F.</au><au>Wilhelm, F.</au><au>Rogalev, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigating magnetic proximity effects at ferrite/Pt interfaces</atitle><jtitle>Applied physics letters</jtitle><date>2017-11-13</date><risdate>2017</risdate><volume>111</volume><issue>20</issue><spage>202401</spage><epage>202402</epage><pages>202401-202402</pages><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Spintronic devices based on pure spin currents have drawn a lot of attention during the last few years for low energy device design. One approach to generate pure spin currents is to combine a metallic or insulating ferromagnetic layer with a non-magnetic metallic layer with a large spin-orbit coupling. A recent controversy has arisen in the possible role of magnetic proximity effects at ferromagnetic/non-magnetic interfaces, which can hamper the understanding of pure spin current generation mechanisms. While magnetic proximity effects have been frequently observed at ferromagnetic metal/non-magnetic interfaces, there are only a few studies on ferromagnetic insulator/non-magnetic interfaces. Regarding the use of ferromagnetic insulators, the focus has been mainly on yttrium iron garnet (YIG). However, investigation of induced magnetic moments at YIG/Pt interfaces has engendered contradictory results. Here, we propose to study insulating ferrites for which electronic and magnetic properties can be modulated. Magnetic proximity effects have been investigated at MnFe2O4/Pt, CoFe2O4/Pt, and NiFe2O4/Pt interfaces by X-ray circular magnetic dichroism (XMCD) measurements at the Pt L3 edge. Although hybridization with Pt seems to be different among the ferrites, we do not detect any XMCD signal as the signature of an induced magnetism in Pt. We have then studied the Fe3O4 ferrite below and above the Verwey transition temperature. No XMCD signal has been measured in the insulating or conducting phase of Fe3O4. This suggests that the absence of magnetic proximity effects at ferrite/Pt interfaces is not linked to the insulating character or not of the ferrites.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4987145</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0001-5396-6165</orcidid><orcidid>https://orcid.org/0000-0002-2753-9984</orcidid><orcidid>https://orcid.org/0000-0002-8815-6434</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2017-11, Vol.111 (20), p.202401-202402
issn 0003-6951
1077-3118
language eng
recordid cdi_scitation_primary_10_1063_1_4987145
source AIP Journals Complete; Alma/SFX Local Collection
subjects Applied physics
Cobalt ferrites
Dichroism
Drawing and ironing
Ferromagnetism
Insulators
Investigations
Iron oxides
Magnetic moments
Magnetic properties
Magnetism
Nickel ferrites
Physics
Proximity
Spin-orbit interactions
Spintronics
Transition temperature
Yttrium
Yttrium-iron garnet
title Investigating magnetic proximity effects at ferrite/Pt interfaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T02%3A09%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigating%20magnetic%20proximity%20effects%20at%20ferrite/Pt%20interfaces&rft.jtitle=Applied%20physics%20letters&rft.au=Collet,%20M.&rft.date=2017-11-13&rft.volume=111&rft.issue=20&rft.spage=202401&rft.epage=202402&rft.pages=202401-202402&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/1.4987145&rft_dat=%3Cproquest_scita%3E2116025002%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2116025002&rft_id=info:pmid/&rfr_iscdi=true