Topological field theories of 2- and 3-forms in six dimensions

We consider several diffeomorphism invariant field theories of 2- and 3-forms in six dimensions. They all share the same kinetic term BdC but differ in the potential term that is added. The theory BdC with no potential term is topological—it describes no propagating degrees of freedom. We show that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2017-08, Vol.58 (8), p.1
Hauptverfasser: Herfray, Yannick, Krasnov, Kirill
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page 1
container_title Journal of mathematical physics
container_volume 58
creator Herfray, Yannick
Krasnov, Kirill
description We consider several diffeomorphism invariant field theories of 2- and 3-forms in six dimensions. They all share the same kinetic term BdC but differ in the potential term that is added. The theory BdC with no potential term is topological—it describes no propagating degrees of freedom. We show that the theory continues to remain topological when either the BBB or C Ĉ potential term is added. The latter theory can be viewed as a background independent version of the 6-dimensional Hitchin theory, for its critical points are complex or para-complex 6-manifolds, but unlike in Hitchin’s construction, one does not need to choose a background cohomology class to define the theory. We also show that the dimensional reduction of the C Ĉ theory to three dimensions, when reducing on S 3, gives 3D gravity.
doi_str_mv 10.1063/1.4987013
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_4987013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2116080043</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-87acb444ede93064953057bb89fd37e7cb0f84658cc79f2008c28b02b067d603</originalsourceid><addsrcrecordid>eNp9kE1LAzEURYMoWKsL_0HAlcLUl49JMhuhFLVCwU33IZNJbMp0UpOp6L93Sou46urB43Dv4SJ0S2BCQLBHMuGVkkDYGRoRUFUhRanO0QiA0oJypS7RVc5rAEIU5yP0tIzb2MaPYE2LfXBtg_uViym4jKPHtMCmazArfEybjEOHc_jGTdi4LofY5Wt04U2b3c3xjtHy5Xk5mxeL99e32XRRWFbyvlDS2Jpz7hpXMRC8KhmUsq5V5RsmnbQ1eMUHU2tl5SmAslTVQGsQshHAxuj-ELsyrd6msDHpR0cT9Hy60PsfEMFLQcQXGdi7A7tN8XPncq_XcZe6wU5TQgQoAM5OUaRigg6S9F-vTTHn5PxfOQG931sTfdx7YB8ObLahN_2wzgn4F8vVeuY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1936206420</pqid></control><display><type>article</type><title>Topological field theories of 2- and 3-forms in six dimensions</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Herfray, Yannick ; Krasnov, Kirill</creator><creatorcontrib>Herfray, Yannick ; Krasnov, Kirill</creatorcontrib><description>We consider several diffeomorphism invariant field theories of 2- and 3-forms in six dimensions. They all share the same kinetic term BdC but differ in the potential term that is added. The theory BdC with no potential term is topological—it describes no propagating degrees of freedom. We show that the theory continues to remain topological when either the BBB or C Ĉ potential term is added. The latter theory can be viewed as a background independent version of the 6-dimensional Hitchin theory, for its critical points are complex or para-complex 6-manifolds, but unlike in Hitchin’s construction, one does not need to choose a background cohomology class to define the theory. We also show that the dimensional reduction of the C Ĉ theory to three dimensions, when reducing on S 3, gives 3D gravity.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.4987013</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>New York: American Institute of Physics</publisher><subject>Field theory ; General Relativity and Quantum Cosmology ; Gravitation ; Gravity ; High Energy Physics - Theory ; Kinetics ; Manifolds (mathematics) ; Mathematical Physics ; Physics ; Topological manifolds ; Topology</subject><ispartof>Journal of mathematical physics, 2017-08, Vol.58 (8), p.1</ispartof><rights>Author(s)</rights><rights>Copyright American Institute of Physics Aug 2017</rights><rights>2017 Author(s). Published by AIP Publishing.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-87acb444ede93064953057bb89fd37e7cb0f84658cc79f2008c28b02b067d603</citedby><cites>FETCH-LOGICAL-c354t-87acb444ede93064953057bb89fd37e7cb0f84658cc79f2008c28b02b067d603</cites><orcidid>0000-0002-5646-4301</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.4987013$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,780,784,794,885,4512,27924,27925,76256</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01645616$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Herfray, Yannick</creatorcontrib><creatorcontrib>Krasnov, Kirill</creatorcontrib><title>Topological field theories of 2- and 3-forms in six dimensions</title><title>Journal of mathematical physics</title><description>We consider several diffeomorphism invariant field theories of 2- and 3-forms in six dimensions. They all share the same kinetic term BdC but differ in the potential term that is added. The theory BdC with no potential term is topological—it describes no propagating degrees of freedom. We show that the theory continues to remain topological when either the BBB or C Ĉ potential term is added. The latter theory can be viewed as a background independent version of the 6-dimensional Hitchin theory, for its critical points are complex or para-complex 6-manifolds, but unlike in Hitchin’s construction, one does not need to choose a background cohomology class to define the theory. We also show that the dimensional reduction of the C Ĉ theory to three dimensions, when reducing on S 3, gives 3D gravity.</description><subject>Field theory</subject><subject>General Relativity and Quantum Cosmology</subject><subject>Gravitation</subject><subject>Gravity</subject><subject>High Energy Physics - Theory</subject><subject>Kinetics</subject><subject>Manifolds (mathematics)</subject><subject>Mathematical Physics</subject><subject>Physics</subject><subject>Topological manifolds</subject><subject>Topology</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEURYMoWKsL_0HAlcLUl49JMhuhFLVCwU33IZNJbMp0UpOp6L93Sou46urB43Dv4SJ0S2BCQLBHMuGVkkDYGRoRUFUhRanO0QiA0oJypS7RVc5rAEIU5yP0tIzb2MaPYE2LfXBtg_uViym4jKPHtMCmazArfEybjEOHc_jGTdi4LofY5Wt04U2b3c3xjtHy5Xk5mxeL99e32XRRWFbyvlDS2Jpz7hpXMRC8KhmUsq5V5RsmnbQ1eMUHU2tl5SmAslTVQGsQshHAxuj-ELsyrd6msDHpR0cT9Hy60PsfEMFLQcQXGdi7A7tN8XPncq_XcZe6wU5TQgQoAM5OUaRigg6S9F-vTTHn5PxfOQG931sTfdx7YB8ObLahN_2wzgn4F8vVeuY</recordid><startdate>20170801</startdate><enddate>20170801</enddate><creator>Herfray, Yannick</creator><creator>Krasnov, Kirill</creator><general>American Institute of Physics</general><general>American Institute of Physics (AIP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-5646-4301</orcidid></search><sort><creationdate>20170801</creationdate><title>Topological field theories of 2- and 3-forms in six dimensions</title><author>Herfray, Yannick ; Krasnov, Kirill</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-87acb444ede93064953057bb89fd37e7cb0f84658cc79f2008c28b02b067d603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Field theory</topic><topic>General Relativity and Quantum Cosmology</topic><topic>Gravitation</topic><topic>Gravity</topic><topic>High Energy Physics - Theory</topic><topic>Kinetics</topic><topic>Manifolds (mathematics)</topic><topic>Mathematical Physics</topic><topic>Physics</topic><topic>Topological manifolds</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Herfray, Yannick</creatorcontrib><creatorcontrib>Krasnov, Kirill</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Herfray, Yannick</au><au>Krasnov, Kirill</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Topological field theories of 2- and 3-forms in six dimensions</atitle><jtitle>Journal of mathematical physics</jtitle><date>2017-08-01</date><risdate>2017</risdate><volume>58</volume><issue>8</issue><spage>1</spage><pages>1-</pages><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>We consider several diffeomorphism invariant field theories of 2- and 3-forms in six dimensions. They all share the same kinetic term BdC but differ in the potential term that is added. The theory BdC with no potential term is topological—it describes no propagating degrees of freedom. We show that the theory continues to remain topological when either the BBB or C Ĉ potential term is added. The latter theory can be viewed as a background independent version of the 6-dimensional Hitchin theory, for its critical points are complex or para-complex 6-manifolds, but unlike in Hitchin’s construction, one does not need to choose a background cohomology class to define the theory. We also show that the dimensional reduction of the C Ĉ theory to three dimensions, when reducing on S 3, gives 3D gravity.</abstract><cop>New York</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4987013</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-5646-4301</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-2488
ispartof Journal of mathematical physics, 2017-08, Vol.58 (8), p.1
issn 0022-2488
1089-7658
language eng
recordid cdi_scitation_primary_10_1063_1_4987013
source AIP Journals Complete; Alma/SFX Local Collection
subjects Field theory
General Relativity and Quantum Cosmology
Gravitation
Gravity
High Energy Physics - Theory
Kinetics
Manifolds (mathematics)
Mathematical Physics
Physics
Topological manifolds
Topology
title Topological field theories of 2- and 3-forms in six dimensions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T05%3A41%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Topological%20field%20theories%20of%202-%20and%203-forms%20in%20six%20dimensions&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Herfray,%20Yannick&rft.date=2017-08-01&rft.volume=58&rft.issue=8&rft.spage=1&rft.pages=1-&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.4987013&rft_dat=%3Cproquest_scita%3E2116080043%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1936206420&rft_id=info:pmid/&rfr_iscdi=true