Topological field theories of 2- and 3-forms in six dimensions
We consider several diffeomorphism invariant field theories of 2- and 3-forms in six dimensions. They all share the same kinetic term BdC but differ in the potential term that is added. The theory BdC with no potential term is topological—it describes no propagating degrees of freedom. We show that...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical physics 2017-08, Vol.58 (8), p.1 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 8 |
container_start_page | 1 |
container_title | Journal of mathematical physics |
container_volume | 58 |
creator | Herfray, Yannick Krasnov, Kirill |
description | We consider several diffeomorphism invariant field theories of 2- and 3-forms in six dimensions. They all share the same kinetic term BdC but differ in the potential term that is added. The theory BdC with no potential term is topological—it describes no propagating degrees of freedom. We show that the theory continues to remain topological when either the BBB or
C
Ĉ
potential term is added. The latter theory can be viewed as a background independent version of the 6-dimensional Hitchin theory, for its critical points are complex or para-complex 6-manifolds, but unlike in Hitchin’s construction, one does not need to choose a background cohomology class to define the theory. We also show that the dimensional reduction of the
C
Ĉ
theory to three dimensions, when reducing on S
3, gives 3D gravity. |
doi_str_mv | 10.1063/1.4987013 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_4987013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2116080043</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-87acb444ede93064953057bb89fd37e7cb0f84658cc79f2008c28b02b067d603</originalsourceid><addsrcrecordid>eNp9kE1LAzEURYMoWKsL_0HAlcLUl49JMhuhFLVCwU33IZNJbMp0UpOp6L93Sou46urB43Dv4SJ0S2BCQLBHMuGVkkDYGRoRUFUhRanO0QiA0oJypS7RVc5rAEIU5yP0tIzb2MaPYE2LfXBtg_uViym4jKPHtMCmazArfEybjEOHc_jGTdi4LofY5Wt04U2b3c3xjtHy5Xk5mxeL99e32XRRWFbyvlDS2Jpz7hpXMRC8KhmUsq5V5RsmnbQ1eMUHU2tl5SmAslTVQGsQshHAxuj-ELsyrd6msDHpR0cT9Hy60PsfEMFLQcQXGdi7A7tN8XPncq_XcZe6wU5TQgQoAM5OUaRigg6S9F-vTTHn5PxfOQG931sTfdx7YB8ObLahN_2wzgn4F8vVeuY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1936206420</pqid></control><display><type>article</type><title>Topological field theories of 2- and 3-forms in six dimensions</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Herfray, Yannick ; Krasnov, Kirill</creator><creatorcontrib>Herfray, Yannick ; Krasnov, Kirill</creatorcontrib><description>We consider several diffeomorphism invariant field theories of 2- and 3-forms in six dimensions. They all share the same kinetic term BdC but differ in the potential term that is added. The theory BdC with no potential term is topological—it describes no propagating degrees of freedom. We show that the theory continues to remain topological when either the BBB or
C
Ĉ
potential term is added. The latter theory can be viewed as a background independent version of the 6-dimensional Hitchin theory, for its critical points are complex or para-complex 6-manifolds, but unlike in Hitchin’s construction, one does not need to choose a background cohomology class to define the theory. We also show that the dimensional reduction of the
C
Ĉ
theory to three dimensions, when reducing on S
3, gives 3D gravity.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.4987013</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>New York: American Institute of Physics</publisher><subject>Field theory ; General Relativity and Quantum Cosmology ; Gravitation ; Gravity ; High Energy Physics - Theory ; Kinetics ; Manifolds (mathematics) ; Mathematical Physics ; Physics ; Topological manifolds ; Topology</subject><ispartof>Journal of mathematical physics, 2017-08, Vol.58 (8), p.1</ispartof><rights>Author(s)</rights><rights>Copyright American Institute of Physics Aug 2017</rights><rights>2017 Author(s). Published by AIP Publishing.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-87acb444ede93064953057bb89fd37e7cb0f84658cc79f2008c28b02b067d603</citedby><cites>FETCH-LOGICAL-c354t-87acb444ede93064953057bb89fd37e7cb0f84658cc79f2008c28b02b067d603</cites><orcidid>0000-0002-5646-4301</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.4987013$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,780,784,794,885,4512,27924,27925,76256</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01645616$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Herfray, Yannick</creatorcontrib><creatorcontrib>Krasnov, Kirill</creatorcontrib><title>Topological field theories of 2- and 3-forms in six dimensions</title><title>Journal of mathematical physics</title><description>We consider several diffeomorphism invariant field theories of 2- and 3-forms in six dimensions. They all share the same kinetic term BdC but differ in the potential term that is added. The theory BdC with no potential term is topological—it describes no propagating degrees of freedom. We show that the theory continues to remain topological when either the BBB or
C
Ĉ
potential term is added. The latter theory can be viewed as a background independent version of the 6-dimensional Hitchin theory, for its critical points are complex or para-complex 6-manifolds, but unlike in Hitchin’s construction, one does not need to choose a background cohomology class to define the theory. We also show that the dimensional reduction of the
C
Ĉ
theory to three dimensions, when reducing on S
3, gives 3D gravity.</description><subject>Field theory</subject><subject>General Relativity and Quantum Cosmology</subject><subject>Gravitation</subject><subject>Gravity</subject><subject>High Energy Physics - Theory</subject><subject>Kinetics</subject><subject>Manifolds (mathematics)</subject><subject>Mathematical Physics</subject><subject>Physics</subject><subject>Topological manifolds</subject><subject>Topology</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEURYMoWKsL_0HAlcLUl49JMhuhFLVCwU33IZNJbMp0UpOp6L93Sou46urB43Dv4SJ0S2BCQLBHMuGVkkDYGRoRUFUhRanO0QiA0oJypS7RVc5rAEIU5yP0tIzb2MaPYE2LfXBtg_uViym4jKPHtMCmazArfEybjEOHc_jGTdi4LofY5Wt04U2b3c3xjtHy5Xk5mxeL99e32XRRWFbyvlDS2Jpz7hpXMRC8KhmUsq5V5RsmnbQ1eMUHU2tl5SmAslTVQGsQshHAxuj-ELsyrd6msDHpR0cT9Hy60PsfEMFLQcQXGdi7A7tN8XPncq_XcZe6wU5TQgQoAM5OUaRigg6S9F-vTTHn5PxfOQG931sTfdx7YB8ObLahN_2wzgn4F8vVeuY</recordid><startdate>20170801</startdate><enddate>20170801</enddate><creator>Herfray, Yannick</creator><creator>Krasnov, Kirill</creator><general>American Institute of Physics</general><general>American Institute of Physics (AIP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-5646-4301</orcidid></search><sort><creationdate>20170801</creationdate><title>Topological field theories of 2- and 3-forms in six dimensions</title><author>Herfray, Yannick ; Krasnov, Kirill</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-87acb444ede93064953057bb89fd37e7cb0f84658cc79f2008c28b02b067d603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Field theory</topic><topic>General Relativity and Quantum Cosmology</topic><topic>Gravitation</topic><topic>Gravity</topic><topic>High Energy Physics - Theory</topic><topic>Kinetics</topic><topic>Manifolds (mathematics)</topic><topic>Mathematical Physics</topic><topic>Physics</topic><topic>Topological manifolds</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Herfray, Yannick</creatorcontrib><creatorcontrib>Krasnov, Kirill</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Herfray, Yannick</au><au>Krasnov, Kirill</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Topological field theories of 2- and 3-forms in six dimensions</atitle><jtitle>Journal of mathematical physics</jtitle><date>2017-08-01</date><risdate>2017</risdate><volume>58</volume><issue>8</issue><spage>1</spage><pages>1-</pages><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>We consider several diffeomorphism invariant field theories of 2- and 3-forms in six dimensions. They all share the same kinetic term BdC but differ in the potential term that is added. The theory BdC with no potential term is topological—it describes no propagating degrees of freedom. We show that the theory continues to remain topological when either the BBB or
C
Ĉ
potential term is added. The latter theory can be viewed as a background independent version of the 6-dimensional Hitchin theory, for its critical points are complex or para-complex 6-manifolds, but unlike in Hitchin’s construction, one does not need to choose a background cohomology class to define the theory. We also show that the dimensional reduction of the
C
Ĉ
theory to three dimensions, when reducing on S
3, gives 3D gravity.</abstract><cop>New York</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4987013</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-5646-4301</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2488 |
ispartof | Journal of mathematical physics, 2017-08, Vol.58 (8), p.1 |
issn | 0022-2488 1089-7658 |
language | eng |
recordid | cdi_scitation_primary_10_1063_1_4987013 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Field theory General Relativity and Quantum Cosmology Gravitation Gravity High Energy Physics - Theory Kinetics Manifolds (mathematics) Mathematical Physics Physics Topological manifolds Topology |
title | Topological field theories of 2- and 3-forms in six dimensions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T05%3A41%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Topological%20field%20theories%20of%202-%20and%203-forms%20in%20six%20dimensions&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Herfray,%20Yannick&rft.date=2017-08-01&rft.volume=58&rft.issue=8&rft.spage=1&rft.pages=1-&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.4987013&rft_dat=%3Cproquest_scita%3E2116080043%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1936206420&rft_id=info:pmid/&rfr_iscdi=true |