Noncollinear antiferromagnetic Haldane magnon insulator

In this paper, we present a comprehensive study of topological magnon bands and thermal Hall effect in non-collinear antiferromagnetic systems on the honeycomb lattice with an intrinsic Dzyaloshinskii-Moriya interaction. We theoretically show that the system possesses topological magnon bands with C...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2017-06, Vol.121 (22)
1. Verfasser: Owerre, S. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 22
container_start_page
container_title Journal of applied physics
container_volume 121
creator Owerre, S. A.
description In this paper, we present a comprehensive study of topological magnon bands and thermal Hall effect in non-collinear antiferromagnetic systems on the honeycomb lattice with an intrinsic Dzyaloshinskii-Moriya interaction. We theoretically show that the system possesses topological magnon bands with Chern number protected edge modes accompanied by a nonzero thermal magnon Hall effect. These features result from non-collinearity of the magnetic moments due to an applied out-of-plane magnetic field. Our results provide an experimental clue towards the realization of topological magnon transports in honeycomb antiferromagnetic compounds such as XPS3 (X = Mn,Fe) and α-Cu2V2O7.
doi_str_mv 10.1063/1.4985615
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_4985615</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2116115126</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-3ddb05bc06f6e2715f744d718700ba93760af048466b5dd6dceb6ee0c82b6993</originalsourceid><addsrcrecordid>eNqd0M1KAzEUBeAgCtbqwjcYcKUw9d7J5G8pRa1QdNN9yCQZSZkmNZkKvr0tLbh3deDwcS8cQm4RZgicPuKsVZJxZGdkgiBVLRiDczIBaLCWSqhLclXKGgBRUjUh4j1Fm4YhRG9yZeIYep9z2pjP6Mdgq4UZnIm-OhQpViGW3WDGlK_JRW-G4m9OOSWrl-fVfFEvP17f5k_L2lJFx5o61wHrLPCe-0Yg60XbOoFSAHRGUcHB9NDKlvOOOced9R33HqxsOq4UnZK749ltTl87X0a9Trsc9x91g8gRGTZ8r-6PyuZUSva93uawMflHI-jDLBr1aZa9fTjaYsNoxpDi__B3yn9Qb11PfwFrtHBQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2116115126</pqid></control><display><type>article</type><title>Noncollinear antiferromagnetic Haldane magnon insulator</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Owerre, S. A.</creator><creatorcontrib>Owerre, S. A.</creatorcontrib><description>In this paper, we present a comprehensive study of topological magnon bands and thermal Hall effect in non-collinear antiferromagnetic systems on the honeycomb lattice with an intrinsic Dzyaloshinskii-Moriya interaction. We theoretically show that the system possesses topological magnon bands with Chern number protected edge modes accompanied by a nonzero thermal magnon Hall effect. These features result from non-collinearity of the magnetic moments due to an applied out-of-plane magnetic field. Our results provide an experimental clue towards the realization of topological magnon transports in honeycomb antiferromagnetic compounds such as XPS3 (X = Mn,Fe) and α-Cu2V2O7.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.4985615</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Antiferromagnetism ; Applied physics ; Band theory ; Collinearity ; Electromagnetism ; Hall effect ; Honeycomb construction ; Lattice vibration ; Magnetic moments ; Magnetism ; Manganese</subject><ispartof>Journal of applied physics, 2017-06, Vol.121 (22)</ispartof><rights>Author(s)</rights><rights>2017 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-3ddb05bc06f6e2715f744d718700ba93760af048466b5dd6dceb6ee0c82b6993</citedby><cites>FETCH-LOGICAL-c393t-3ddb05bc06f6e2715f744d718700ba93760af048466b5dd6dceb6ee0c82b6993</cites><orcidid>0000-0002-6147-2912</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/1.4985615$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids></links><search><creatorcontrib>Owerre, S. A.</creatorcontrib><title>Noncollinear antiferromagnetic Haldane magnon insulator</title><title>Journal of applied physics</title><description>In this paper, we present a comprehensive study of topological magnon bands and thermal Hall effect in non-collinear antiferromagnetic systems on the honeycomb lattice with an intrinsic Dzyaloshinskii-Moriya interaction. We theoretically show that the system possesses topological magnon bands with Chern number protected edge modes accompanied by a nonzero thermal magnon Hall effect. These features result from non-collinearity of the magnetic moments due to an applied out-of-plane magnetic field. Our results provide an experimental clue towards the realization of topological magnon transports in honeycomb antiferromagnetic compounds such as XPS3 (X = Mn,Fe) and α-Cu2V2O7.</description><subject>Antiferromagnetism</subject><subject>Applied physics</subject><subject>Band theory</subject><subject>Collinearity</subject><subject>Electromagnetism</subject><subject>Hall effect</subject><subject>Honeycomb construction</subject><subject>Lattice vibration</subject><subject>Magnetic moments</subject><subject>Magnetism</subject><subject>Manganese</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqd0M1KAzEUBeAgCtbqwjcYcKUw9d7J5G8pRa1QdNN9yCQZSZkmNZkKvr0tLbh3deDwcS8cQm4RZgicPuKsVZJxZGdkgiBVLRiDczIBaLCWSqhLclXKGgBRUjUh4j1Fm4YhRG9yZeIYep9z2pjP6Mdgq4UZnIm-OhQpViGW3WDGlK_JRW-G4m9OOSWrl-fVfFEvP17f5k_L2lJFx5o61wHrLPCe-0Yg60XbOoFSAHRGUcHB9NDKlvOOOced9R33HqxsOq4UnZK749ltTl87X0a9Trsc9x91g8gRGTZ8r-6PyuZUSva93uawMflHI-jDLBr1aZa9fTjaYsNoxpDi__B3yn9Qb11PfwFrtHBQ</recordid><startdate>20170614</startdate><enddate>20170614</enddate><creator>Owerre, S. A.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6147-2912</orcidid></search><sort><creationdate>20170614</creationdate><title>Noncollinear antiferromagnetic Haldane magnon insulator</title><author>Owerre, S. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-3ddb05bc06f6e2715f744d718700ba93760af048466b5dd6dceb6ee0c82b6993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Antiferromagnetism</topic><topic>Applied physics</topic><topic>Band theory</topic><topic>Collinearity</topic><topic>Electromagnetism</topic><topic>Hall effect</topic><topic>Honeycomb construction</topic><topic>Lattice vibration</topic><topic>Magnetic moments</topic><topic>Magnetism</topic><topic>Manganese</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Owerre, S. A.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Owerre, S. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Noncollinear antiferromagnetic Haldane magnon insulator</atitle><jtitle>Journal of applied physics</jtitle><date>2017-06-14</date><risdate>2017</risdate><volume>121</volume><issue>22</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>In this paper, we present a comprehensive study of topological magnon bands and thermal Hall effect in non-collinear antiferromagnetic systems on the honeycomb lattice with an intrinsic Dzyaloshinskii-Moriya interaction. We theoretically show that the system possesses topological magnon bands with Chern number protected edge modes accompanied by a nonzero thermal magnon Hall effect. These features result from non-collinearity of the magnetic moments due to an applied out-of-plane magnetic field. Our results provide an experimental clue towards the realization of topological magnon transports in honeycomb antiferromagnetic compounds such as XPS3 (X = Mn,Fe) and α-Cu2V2O7.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4985615</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-6147-2912</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2017-06, Vol.121 (22)
issn 0021-8979
1089-7550
language eng
recordid cdi_scitation_primary_10_1063_1_4985615
source AIP Journals Complete; Alma/SFX Local Collection
subjects Antiferromagnetism
Applied physics
Band theory
Collinearity
Electromagnetism
Hall effect
Honeycomb construction
Lattice vibration
Magnetic moments
Magnetism
Manganese
title Noncollinear antiferromagnetic Haldane magnon insulator
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T18%3A59%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Noncollinear%20antiferromagnetic%20Haldane%20magnon%20insulator&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Owerre,%20S.%20A.&rft.date=2017-06-14&rft.volume=121&rft.issue=22&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/1.4985615&rft_dat=%3Cproquest_scita%3E2116115126%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2116115126&rft_id=info:pmid/&rfr_iscdi=true