Estimation of excitation temperature by duty ratio of observed period in non-equilibrium plasma
We investigated the excitation temperature of atmospheric-pressure non-equilibrium (cold) plasma using a line-pair method. An atmospheric cold plasma was intermittently generated using a quartz tube, a rare gas, and a foil electrode by applying high-voltage alternating current. Because the plasma oc...
Gespeichert in:
Veröffentlicht in: | Physics of plasmas 2017-06, Vol.24 (6) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | |
container_title | Physics of plasmas |
container_volume | 24 |
creator | Yambe, Kiyoyuki Muraoka, Sumihiro Nihei, Takashi Abe, Seiya |
description | We investigated the excitation temperature of atmospheric-pressure non-equilibrium (cold) plasma using a line-pair method. An atmospheric cold plasma was intermittently generated using a quartz tube, a rare gas, and a foil electrode by applying high-voltage alternating current. Because the plasma occurred intermittently, an interval appeared between each generated plasma bullet. We assessed the time-averaged effective intensity from the observed intensity at each wavelength measured using a spectrometer. When the exposure time of the spectrometer is longer than the observed period of the plasma emission light, the time-averaged effective intensity at each wavelength decreases because it includes the interval with no plasma emission light. The difference in intensity between wavelengths changes with frequency, because changing the frequency changes the interval between plasma bullets. Consequently, even if the plasma electron temperature does not depend on the frequency of the applied voltage, the excitation temperature estimated from the difference in intensity changes with the frequency. The plasma electron temperature can be estimated from the duty ratio of the observed period of plasma emission light, and we estimated the electron temperature in the helium and argon cold plasmas to be 1.0 eV. |
doi_str_mv | 10.1063/1.4985308 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_4985308</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2116103263</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-ef182c6c470f4c6391ab321e78a0865d587168530ddc247b1043ef05b6eb21e13</originalsourceid><addsrcrecordid>eNqd0E1LxDAQBuAgCq6rB_9BwJNC10yTpulRlvUDFrwoeAttk0CWbdNN0sX-e1u64t1TJszDDPMidAtkBYTTR1ixQmSUiDO0ACKKJOc5O5_qnCScs69LdBXCjhDCeCYWSG5CtE0ZrWuxM1h_1zbOv6ibTvsy9l7jasCqjwP2U2tyrgraH7XCI7FOYdvi1rWJPvR2bytv-wZ3-zI05TW6MOU-6JvTu0Sfz5uP9WuyfX95Wz9tk5oWNCbagEhrXrOcGFZzWkBZ0RR0LkoieKYykQOf7lKqTlleAWFUG5JVXFcjA7pEd_PczrtDr0OUO9f7dlwpUwAOhKacjup-VrV3IXhtZOfH6_0ggcgpPwnylN9oH2YbfiP5Hz46_wdlpwz9AagjfuQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2116103263</pqid></control><display><type>article</type><title>Estimation of excitation temperature by duty ratio of observed period in non-equilibrium plasma</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Yambe, Kiyoyuki ; Muraoka, Sumihiro ; Nihei, Takashi ; Abe, Seiya</creator><creatorcontrib>Yambe, Kiyoyuki ; Muraoka, Sumihiro ; Nihei, Takashi ; Abe, Seiya</creatorcontrib><description>We investigated the excitation temperature of atmospheric-pressure non-equilibrium (cold) plasma using a line-pair method. An atmospheric cold plasma was intermittently generated using a quartz tube, a rare gas, and a foil electrode by applying high-voltage alternating current. Because the plasma occurred intermittently, an interval appeared between each generated plasma bullet. We assessed the time-averaged effective intensity from the observed intensity at each wavelength measured using a spectrometer. When the exposure time of the spectrometer is longer than the observed period of the plasma emission light, the time-averaged effective intensity at each wavelength decreases because it includes the interval with no plasma emission light. The difference in intensity between wavelengths changes with frequency, because changing the frequency changes the interval between plasma bullets. Consequently, even if the plasma electron temperature does not depend on the frequency of the applied voltage, the excitation temperature estimated from the difference in intensity changes with the frequency. The plasma electron temperature can be estimated from the duty ratio of the observed period of plasma emission light, and we estimated the electron temperature in the helium and argon cold plasmas to be 1.0 eV.</description><identifier>ISSN: 1070-664X</identifier><identifier>EISSN: 1089-7674</identifier><identifier>DOI: 10.1063/1.4985308</identifier><identifier>CODEN: PHPAEN</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Cold plasmas ; Cold pressing ; Electric potential ; Electron energy ; Emission ; Excitation ; Foils ; Helium ; High voltages ; Luminous intensity ; Nonequilibrium plasmas ; Plasma ; Plasma physics ; Projectiles ; Rare gases ; Temperature</subject><ispartof>Physics of plasmas, 2017-06, Vol.24 (6)</ispartof><rights>Author(s)</rights><rights>2017 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-ef182c6c470f4c6391ab321e78a0865d587168530ddc247b1043ef05b6eb21e13</citedby><cites>FETCH-LOGICAL-c393t-ef182c6c470f4c6391ab321e78a0865d587168530ddc247b1043ef05b6eb21e13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/pop/article-lookup/doi/10.1063/1.4985308$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>315,781,785,795,4513,27928,27929,76388</link.rule.ids></links><search><creatorcontrib>Yambe, Kiyoyuki</creatorcontrib><creatorcontrib>Muraoka, Sumihiro</creatorcontrib><creatorcontrib>Nihei, Takashi</creatorcontrib><creatorcontrib>Abe, Seiya</creatorcontrib><title>Estimation of excitation temperature by duty ratio of observed period in non-equilibrium plasma</title><title>Physics of plasmas</title><description>We investigated the excitation temperature of atmospheric-pressure non-equilibrium (cold) plasma using a line-pair method. An atmospheric cold plasma was intermittently generated using a quartz tube, a rare gas, and a foil electrode by applying high-voltage alternating current. Because the plasma occurred intermittently, an interval appeared between each generated plasma bullet. We assessed the time-averaged effective intensity from the observed intensity at each wavelength measured using a spectrometer. When the exposure time of the spectrometer is longer than the observed period of the plasma emission light, the time-averaged effective intensity at each wavelength decreases because it includes the interval with no plasma emission light. The difference in intensity between wavelengths changes with frequency, because changing the frequency changes the interval between plasma bullets. Consequently, even if the plasma electron temperature does not depend on the frequency of the applied voltage, the excitation temperature estimated from the difference in intensity changes with the frequency. The plasma electron temperature can be estimated from the duty ratio of the observed period of plasma emission light, and we estimated the electron temperature in the helium and argon cold plasmas to be 1.0 eV.</description><subject>Cold plasmas</subject><subject>Cold pressing</subject><subject>Electric potential</subject><subject>Electron energy</subject><subject>Emission</subject><subject>Excitation</subject><subject>Foils</subject><subject>Helium</subject><subject>High voltages</subject><subject>Luminous intensity</subject><subject>Nonequilibrium plasmas</subject><subject>Plasma</subject><subject>Plasma physics</subject><subject>Projectiles</subject><subject>Rare gases</subject><subject>Temperature</subject><issn>1070-664X</issn><issn>1089-7674</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqd0E1LxDAQBuAgCq6rB_9BwJNC10yTpulRlvUDFrwoeAttk0CWbdNN0sX-e1u64t1TJszDDPMidAtkBYTTR1ixQmSUiDO0ACKKJOc5O5_qnCScs69LdBXCjhDCeCYWSG5CtE0ZrWuxM1h_1zbOv6ibTvsy9l7jasCqjwP2U2tyrgraH7XCI7FOYdvi1rWJPvR2bytv-wZ3-zI05TW6MOU-6JvTu0Sfz5uP9WuyfX95Wz9tk5oWNCbagEhrXrOcGFZzWkBZ0RR0LkoieKYykQOf7lKqTlleAWFUG5JVXFcjA7pEd_PczrtDr0OUO9f7dlwpUwAOhKacjup-VrV3IXhtZOfH6_0ggcgpPwnylN9oH2YbfiP5Hz46_wdlpwz9AagjfuQ</recordid><startdate>201706</startdate><enddate>201706</enddate><creator>Yambe, Kiyoyuki</creator><creator>Muraoka, Sumihiro</creator><creator>Nihei, Takashi</creator><creator>Abe, Seiya</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>201706</creationdate><title>Estimation of excitation temperature by duty ratio of observed period in non-equilibrium plasma</title><author>Yambe, Kiyoyuki ; Muraoka, Sumihiro ; Nihei, Takashi ; Abe, Seiya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-ef182c6c470f4c6391ab321e78a0865d587168530ddc247b1043ef05b6eb21e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Cold plasmas</topic><topic>Cold pressing</topic><topic>Electric potential</topic><topic>Electron energy</topic><topic>Emission</topic><topic>Excitation</topic><topic>Foils</topic><topic>Helium</topic><topic>High voltages</topic><topic>Luminous intensity</topic><topic>Nonequilibrium plasmas</topic><topic>Plasma</topic><topic>Plasma physics</topic><topic>Projectiles</topic><topic>Rare gases</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yambe, Kiyoyuki</creatorcontrib><creatorcontrib>Muraoka, Sumihiro</creatorcontrib><creatorcontrib>Nihei, Takashi</creatorcontrib><creatorcontrib>Abe, Seiya</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of plasmas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yambe, Kiyoyuki</au><au>Muraoka, Sumihiro</au><au>Nihei, Takashi</au><au>Abe, Seiya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimation of excitation temperature by duty ratio of observed period in non-equilibrium plasma</atitle><jtitle>Physics of plasmas</jtitle><date>2017-06</date><risdate>2017</risdate><volume>24</volume><issue>6</issue><issn>1070-664X</issn><eissn>1089-7674</eissn><coden>PHPAEN</coden><abstract>We investigated the excitation temperature of atmospheric-pressure non-equilibrium (cold) plasma using a line-pair method. An atmospheric cold plasma was intermittently generated using a quartz tube, a rare gas, and a foil electrode by applying high-voltage alternating current. Because the plasma occurred intermittently, an interval appeared between each generated plasma bullet. We assessed the time-averaged effective intensity from the observed intensity at each wavelength measured using a spectrometer. When the exposure time of the spectrometer is longer than the observed period of the plasma emission light, the time-averaged effective intensity at each wavelength decreases because it includes the interval with no plasma emission light. The difference in intensity between wavelengths changes with frequency, because changing the frequency changes the interval between plasma bullets. Consequently, even if the plasma electron temperature does not depend on the frequency of the applied voltage, the excitation temperature estimated from the difference in intensity changes with the frequency. The plasma electron temperature can be estimated from the duty ratio of the observed period of plasma emission light, and we estimated the electron temperature in the helium and argon cold plasmas to be 1.0 eV.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4985308</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-664X |
ispartof | Physics of plasmas, 2017-06, Vol.24 (6) |
issn | 1070-664X 1089-7674 |
language | eng |
recordid | cdi_scitation_primary_10_1063_1_4985308 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Cold plasmas Cold pressing Electric potential Electron energy Emission Excitation Foils Helium High voltages Luminous intensity Nonequilibrium plasmas Plasma Plasma physics Projectiles Rare gases Temperature |
title | Estimation of excitation temperature by duty ratio of observed period in non-equilibrium plasma |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T21%3A05%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimation%20of%20excitation%20temperature%20by%20duty%20ratio%20of%20observed%20period%20in%20non-equilibrium%20plasma&rft.jtitle=Physics%20of%20plasmas&rft.au=Yambe,%20Kiyoyuki&rft.date=2017-06&rft.volume=24&rft.issue=6&rft.issn=1070-664X&rft.eissn=1089-7674&rft.coden=PHPAEN&rft_id=info:doi/10.1063/1.4985308&rft_dat=%3Cproquest_scita%3E2116103263%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2116103263&rft_id=info:pmid/&rfr_iscdi=true |