Estimation of excitation temperature by duty ratio of observed period in non-equilibrium plasma

We investigated the excitation temperature of atmospheric-pressure non-equilibrium (cold) plasma using a line-pair method. An atmospheric cold plasma was intermittently generated using a quartz tube, a rare gas, and a foil electrode by applying high-voltage alternating current. Because the plasma oc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of plasmas 2017-06, Vol.24 (6)
Hauptverfasser: Yambe, Kiyoyuki, Muraoka, Sumihiro, Nihei, Takashi, Abe, Seiya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page
container_title Physics of plasmas
container_volume 24
creator Yambe, Kiyoyuki
Muraoka, Sumihiro
Nihei, Takashi
Abe, Seiya
description We investigated the excitation temperature of atmospheric-pressure non-equilibrium (cold) plasma using a line-pair method. An atmospheric cold plasma was intermittently generated using a quartz tube, a rare gas, and a foil electrode by applying high-voltage alternating current. Because the plasma occurred intermittently, an interval appeared between each generated plasma bullet. We assessed the time-averaged effective intensity from the observed intensity at each wavelength measured using a spectrometer. When the exposure time of the spectrometer is longer than the observed period of the plasma emission light, the time-averaged effective intensity at each wavelength decreases because it includes the interval with no plasma emission light. The difference in intensity between wavelengths changes with frequency, because changing the frequency changes the interval between plasma bullets. Consequently, even if the plasma electron temperature does not depend on the frequency of the applied voltage, the excitation temperature estimated from the difference in intensity changes with the frequency. The plasma electron temperature can be estimated from the duty ratio of the observed period of plasma emission light, and we estimated the electron temperature in the helium and argon cold plasmas to be 1.0 eV.
doi_str_mv 10.1063/1.4985308
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_4985308</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2116103263</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-ef182c6c470f4c6391ab321e78a0865d587168530ddc247b1043ef05b6eb21e13</originalsourceid><addsrcrecordid>eNqd0E1LxDAQBuAgCq6rB_9BwJNC10yTpulRlvUDFrwoeAttk0CWbdNN0sX-e1u64t1TJszDDPMidAtkBYTTR1ixQmSUiDO0ACKKJOc5O5_qnCScs69LdBXCjhDCeCYWSG5CtE0ZrWuxM1h_1zbOv6ibTvsy9l7jasCqjwP2U2tyrgraH7XCI7FOYdvi1rWJPvR2bytv-wZ3-zI05TW6MOU-6JvTu0Sfz5uP9WuyfX95Wz9tk5oWNCbagEhrXrOcGFZzWkBZ0RR0LkoieKYykQOf7lKqTlleAWFUG5JVXFcjA7pEd_PczrtDr0OUO9f7dlwpUwAOhKacjup-VrV3IXhtZOfH6_0ggcgpPwnylN9oH2YbfiP5Hz46_wdlpwz9AagjfuQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2116103263</pqid></control><display><type>article</type><title>Estimation of excitation temperature by duty ratio of observed period in non-equilibrium plasma</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Yambe, Kiyoyuki ; Muraoka, Sumihiro ; Nihei, Takashi ; Abe, Seiya</creator><creatorcontrib>Yambe, Kiyoyuki ; Muraoka, Sumihiro ; Nihei, Takashi ; Abe, Seiya</creatorcontrib><description>We investigated the excitation temperature of atmospheric-pressure non-equilibrium (cold) plasma using a line-pair method. An atmospheric cold plasma was intermittently generated using a quartz tube, a rare gas, and a foil electrode by applying high-voltage alternating current. Because the plasma occurred intermittently, an interval appeared between each generated plasma bullet. We assessed the time-averaged effective intensity from the observed intensity at each wavelength measured using a spectrometer. When the exposure time of the spectrometer is longer than the observed period of the plasma emission light, the time-averaged effective intensity at each wavelength decreases because it includes the interval with no plasma emission light. The difference in intensity between wavelengths changes with frequency, because changing the frequency changes the interval between plasma bullets. Consequently, even if the plasma electron temperature does not depend on the frequency of the applied voltage, the excitation temperature estimated from the difference in intensity changes with the frequency. The plasma electron temperature can be estimated from the duty ratio of the observed period of plasma emission light, and we estimated the electron temperature in the helium and argon cold plasmas to be 1.0 eV.</description><identifier>ISSN: 1070-664X</identifier><identifier>EISSN: 1089-7674</identifier><identifier>DOI: 10.1063/1.4985308</identifier><identifier>CODEN: PHPAEN</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Cold plasmas ; Cold pressing ; Electric potential ; Electron energy ; Emission ; Excitation ; Foils ; Helium ; High voltages ; Luminous intensity ; Nonequilibrium plasmas ; Plasma ; Plasma physics ; Projectiles ; Rare gases ; Temperature</subject><ispartof>Physics of plasmas, 2017-06, Vol.24 (6)</ispartof><rights>Author(s)</rights><rights>2017 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-ef182c6c470f4c6391ab321e78a0865d587168530ddc247b1043ef05b6eb21e13</citedby><cites>FETCH-LOGICAL-c393t-ef182c6c470f4c6391ab321e78a0865d587168530ddc247b1043ef05b6eb21e13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/pop/article-lookup/doi/10.1063/1.4985308$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>315,781,785,795,4513,27928,27929,76388</link.rule.ids></links><search><creatorcontrib>Yambe, Kiyoyuki</creatorcontrib><creatorcontrib>Muraoka, Sumihiro</creatorcontrib><creatorcontrib>Nihei, Takashi</creatorcontrib><creatorcontrib>Abe, Seiya</creatorcontrib><title>Estimation of excitation temperature by duty ratio of observed period in non-equilibrium plasma</title><title>Physics of plasmas</title><description>We investigated the excitation temperature of atmospheric-pressure non-equilibrium (cold) plasma using a line-pair method. An atmospheric cold plasma was intermittently generated using a quartz tube, a rare gas, and a foil electrode by applying high-voltage alternating current. Because the plasma occurred intermittently, an interval appeared between each generated plasma bullet. We assessed the time-averaged effective intensity from the observed intensity at each wavelength measured using a spectrometer. When the exposure time of the spectrometer is longer than the observed period of the plasma emission light, the time-averaged effective intensity at each wavelength decreases because it includes the interval with no plasma emission light. The difference in intensity between wavelengths changes with frequency, because changing the frequency changes the interval between plasma bullets. Consequently, even if the plasma electron temperature does not depend on the frequency of the applied voltage, the excitation temperature estimated from the difference in intensity changes with the frequency. The plasma electron temperature can be estimated from the duty ratio of the observed period of plasma emission light, and we estimated the electron temperature in the helium and argon cold plasmas to be 1.0 eV.</description><subject>Cold plasmas</subject><subject>Cold pressing</subject><subject>Electric potential</subject><subject>Electron energy</subject><subject>Emission</subject><subject>Excitation</subject><subject>Foils</subject><subject>Helium</subject><subject>High voltages</subject><subject>Luminous intensity</subject><subject>Nonequilibrium plasmas</subject><subject>Plasma</subject><subject>Plasma physics</subject><subject>Projectiles</subject><subject>Rare gases</subject><subject>Temperature</subject><issn>1070-664X</issn><issn>1089-7674</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqd0E1LxDAQBuAgCq6rB_9BwJNC10yTpulRlvUDFrwoeAttk0CWbdNN0sX-e1u64t1TJszDDPMidAtkBYTTR1ixQmSUiDO0ACKKJOc5O5_qnCScs69LdBXCjhDCeCYWSG5CtE0ZrWuxM1h_1zbOv6ibTvsy9l7jasCqjwP2U2tyrgraH7XCI7FOYdvi1rWJPvR2bytv-wZ3-zI05TW6MOU-6JvTu0Sfz5uP9WuyfX95Wz9tk5oWNCbagEhrXrOcGFZzWkBZ0RR0LkoieKYykQOf7lKqTlleAWFUG5JVXFcjA7pEd_PczrtDr0OUO9f7dlwpUwAOhKacjup-VrV3IXhtZOfH6_0ggcgpPwnylN9oH2YbfiP5Hz46_wdlpwz9AagjfuQ</recordid><startdate>201706</startdate><enddate>201706</enddate><creator>Yambe, Kiyoyuki</creator><creator>Muraoka, Sumihiro</creator><creator>Nihei, Takashi</creator><creator>Abe, Seiya</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>201706</creationdate><title>Estimation of excitation temperature by duty ratio of observed period in non-equilibrium plasma</title><author>Yambe, Kiyoyuki ; Muraoka, Sumihiro ; Nihei, Takashi ; Abe, Seiya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-ef182c6c470f4c6391ab321e78a0865d587168530ddc247b1043ef05b6eb21e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Cold plasmas</topic><topic>Cold pressing</topic><topic>Electric potential</topic><topic>Electron energy</topic><topic>Emission</topic><topic>Excitation</topic><topic>Foils</topic><topic>Helium</topic><topic>High voltages</topic><topic>Luminous intensity</topic><topic>Nonequilibrium plasmas</topic><topic>Plasma</topic><topic>Plasma physics</topic><topic>Projectiles</topic><topic>Rare gases</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yambe, Kiyoyuki</creatorcontrib><creatorcontrib>Muraoka, Sumihiro</creatorcontrib><creatorcontrib>Nihei, Takashi</creatorcontrib><creatorcontrib>Abe, Seiya</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of plasmas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yambe, Kiyoyuki</au><au>Muraoka, Sumihiro</au><au>Nihei, Takashi</au><au>Abe, Seiya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimation of excitation temperature by duty ratio of observed period in non-equilibrium plasma</atitle><jtitle>Physics of plasmas</jtitle><date>2017-06</date><risdate>2017</risdate><volume>24</volume><issue>6</issue><issn>1070-664X</issn><eissn>1089-7674</eissn><coden>PHPAEN</coden><abstract>We investigated the excitation temperature of atmospheric-pressure non-equilibrium (cold) plasma using a line-pair method. An atmospheric cold plasma was intermittently generated using a quartz tube, a rare gas, and a foil electrode by applying high-voltage alternating current. Because the plasma occurred intermittently, an interval appeared between each generated plasma bullet. We assessed the time-averaged effective intensity from the observed intensity at each wavelength measured using a spectrometer. When the exposure time of the spectrometer is longer than the observed period of the plasma emission light, the time-averaged effective intensity at each wavelength decreases because it includes the interval with no plasma emission light. The difference in intensity between wavelengths changes with frequency, because changing the frequency changes the interval between plasma bullets. Consequently, even if the plasma electron temperature does not depend on the frequency of the applied voltage, the excitation temperature estimated from the difference in intensity changes with the frequency. The plasma electron temperature can be estimated from the duty ratio of the observed period of plasma emission light, and we estimated the electron temperature in the helium and argon cold plasmas to be 1.0 eV.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4985308</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1070-664X
ispartof Physics of plasmas, 2017-06, Vol.24 (6)
issn 1070-664X
1089-7674
language eng
recordid cdi_scitation_primary_10_1063_1_4985308
source AIP Journals Complete; Alma/SFX Local Collection
subjects Cold plasmas
Cold pressing
Electric potential
Electron energy
Emission
Excitation
Foils
Helium
High voltages
Luminous intensity
Nonequilibrium plasmas
Plasma
Plasma physics
Projectiles
Rare gases
Temperature
title Estimation of excitation temperature by duty ratio of observed period in non-equilibrium plasma
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T21%3A05%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimation%20of%20excitation%20temperature%20by%20duty%20ratio%20of%20observed%20period%20in%20non-equilibrium%20plasma&rft.jtitle=Physics%20of%20plasmas&rft.au=Yambe,%20Kiyoyuki&rft.date=2017-06&rft.volume=24&rft.issue=6&rft.issn=1070-664X&rft.eissn=1089-7674&rft.coden=PHPAEN&rft_id=info:doi/10.1063/1.4985308&rft_dat=%3Cproquest_scita%3E2116103263%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2116103263&rft_id=info:pmid/&rfr_iscdi=true