Study of “source sheath” problem in PIC/MC simulation: Spherical geometry

A method for treatment of boundary conditions and particle loading in a self-consistent semi-infinite Particle-In-Cell/Monte Carlo simulation is presented. A non-ionizing, collisional plasma in contact with an electrode was assumed. The simulation was performed for a spherical probe with constant pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of plasmas 2017-06, Vol.24 (6)
Hauptverfasser: Trunec, David, Zikán, Petr, Wagner, Jakub, Bonaventura, Zdeněk
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page
container_title Physics of plasmas
container_volume 24
creator Trunec, David
Zikán, Petr
Wagner, Jakub
Bonaventura, Zdeněk
description A method for treatment of boundary conditions and particle loading in a self-consistent semi-infinite Particle-In-Cell/Monte Carlo simulation is presented. A non-ionizing, collisional plasma in contact with an electrode was assumed. The simulation was performed for a spherical probe with constant probe potential. The motion of charged particles was calculated in three dimensions, but only the radial charge distribution and thus only radial electric field were assumed. The particle loading has to be done with an appropriate velocity distribution with a radial drift velocity. This drift velocity has to be calculated from the probe current, and therefore, a self-consistent (iterative) approach is necessary. Furthermore, correct values of particle densities and electric field potential at the outer boundary of the computational domain have to be set using asymptotic formulae for particle density and electric field potential. This approach removes the “source sheath” which is created artificially, if incorrect boundary conditions and velocity distributions of loaded particles are used. This approach is, however, feasible only for the case of a negative probe where asymptotic formulae are known.
doi_str_mv 10.1063/1.4984990
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_4984990</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2116103956</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-db168492592c7f256d625c639a3c88cfa2e5c71a552473c619211c9bf3066c333</originalsourceid><addsrcrecordid>eNp90M1KAzEQB_AgCtbqwTcIeFLYNh-b7MabLH4UWhSq4C2k2cRu2W3WZFforQ-iL9cncWtFD4KnmcOPmf8MAKcYDTDidIgHsUhjIdAe6GGUiijhSby_7RMUcR4_H4KjEBYIoZiztAcm06bNV9BZuFm_B9d6bWCYG9XMN-sPWHs3K00FiyV8GGXDSQZDUbWlagq3vITTem58oVUJX4yrTONXx-DAqjKYk-_aB08314_ZXTS-vx1lV-NIU5I0UT7DvAtJmCA6sYTxnBOmORWK6jTVVhHDdIIVYyROqOZYEIy1mFmKONeU0j44283tAr62JjRy0UVfditlJzlGVDDeqfOd0t6F4I2VtS8q5VcSI7n9lsTy-1udvdjZoIvm674f_Ob8L5R1bv_Dfyd_Ag3neGk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2116103956</pqid></control><display><type>article</type><title>Study of “source sheath” problem in PIC/MC simulation: Spherical geometry</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Trunec, David ; Zikán, Petr ; Wagner, Jakub ; Bonaventura, Zdeněk</creator><creatorcontrib>Trunec, David ; Zikán, Petr ; Wagner, Jakub ; Bonaventura, Zdeněk</creatorcontrib><description>A method for treatment of boundary conditions and particle loading in a self-consistent semi-infinite Particle-In-Cell/Monte Carlo simulation is presented. A non-ionizing, collisional plasma in contact with an electrode was assumed. The simulation was performed for a spherical probe with constant probe potential. The motion of charged particles was calculated in three dimensions, but only the radial charge distribution and thus only radial electric field were assumed. The particle loading has to be done with an appropriate velocity distribution with a radial drift velocity. This drift velocity has to be calculated from the probe current, and therefore, a self-consistent (iterative) approach is necessary. Furthermore, correct values of particle densities and electric field potential at the outer boundary of the computational domain have to be set using asymptotic formulae for particle density and electric field potential. This approach removes the “source sheath” which is created artificially, if incorrect boundary conditions and velocity distributions of loaded particles are used. This approach is, however, feasible only for the case of a negative probe where asymptotic formulae are known.</description><identifier>ISSN: 1070-664X</identifier><identifier>EISSN: 1089-7674</identifier><identifier>DOI: 10.1063/1.4984990</identifier><identifier>CODEN: PHPAEN</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Boundary conditions ; Charge distribution ; Charged particles ; Collisional plasmas ; Computer simulation ; Drift ; Electric contacts ; Electric fields ; Electric potential ; Iterative methods ; Mathematical analysis ; Particle density (concentration) ; Particle in cell technique ; Plasma physics ; Sheaths ; Velocity ; Velocity distribution</subject><ispartof>Physics of plasmas, 2017-06, Vol.24 (6)</ispartof><rights>Author(s)</rights><rights>2017 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-db168492592c7f256d625c639a3c88cfa2e5c71a552473c619211c9bf3066c333</citedby><cites>FETCH-LOGICAL-c327t-db168492592c7f256d625c639a3c88cfa2e5c71a552473c619211c9bf3066c333</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/pop/article-lookup/doi/10.1063/1.4984990$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76126</link.rule.ids></links><search><creatorcontrib>Trunec, David</creatorcontrib><creatorcontrib>Zikán, Petr</creatorcontrib><creatorcontrib>Wagner, Jakub</creatorcontrib><creatorcontrib>Bonaventura, Zdeněk</creatorcontrib><title>Study of “source sheath” problem in PIC/MC simulation: Spherical geometry</title><title>Physics of plasmas</title><description>A method for treatment of boundary conditions and particle loading in a self-consistent semi-infinite Particle-In-Cell/Monte Carlo simulation is presented. A non-ionizing, collisional plasma in contact with an electrode was assumed. The simulation was performed for a spherical probe with constant probe potential. The motion of charged particles was calculated in three dimensions, but only the radial charge distribution and thus only radial electric field were assumed. The particle loading has to be done with an appropriate velocity distribution with a radial drift velocity. This drift velocity has to be calculated from the probe current, and therefore, a self-consistent (iterative) approach is necessary. Furthermore, correct values of particle densities and electric field potential at the outer boundary of the computational domain have to be set using asymptotic formulae for particle density and electric field potential. This approach removes the “source sheath” which is created artificially, if incorrect boundary conditions and velocity distributions of loaded particles are used. This approach is, however, feasible only for the case of a negative probe where asymptotic formulae are known.</description><subject>Boundary conditions</subject><subject>Charge distribution</subject><subject>Charged particles</subject><subject>Collisional plasmas</subject><subject>Computer simulation</subject><subject>Drift</subject><subject>Electric contacts</subject><subject>Electric fields</subject><subject>Electric potential</subject><subject>Iterative methods</subject><subject>Mathematical analysis</subject><subject>Particle density (concentration)</subject><subject>Particle in cell technique</subject><subject>Plasma physics</subject><subject>Sheaths</subject><subject>Velocity</subject><subject>Velocity distribution</subject><issn>1070-664X</issn><issn>1089-7674</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp90M1KAzEQB_AgCtbqwTcIeFLYNh-b7MabLH4UWhSq4C2k2cRu2W3WZFforQ-iL9cncWtFD4KnmcOPmf8MAKcYDTDidIgHsUhjIdAe6GGUiijhSby_7RMUcR4_H4KjEBYIoZiztAcm06bNV9BZuFm_B9d6bWCYG9XMN-sPWHs3K00FiyV8GGXDSQZDUbWlagq3vITTem58oVUJX4yrTONXx-DAqjKYk-_aB08314_ZXTS-vx1lV-NIU5I0UT7DvAtJmCA6sYTxnBOmORWK6jTVVhHDdIIVYyROqOZYEIy1mFmKONeU0j44283tAr62JjRy0UVfditlJzlGVDDeqfOd0t6F4I2VtS8q5VcSI7n9lsTy-1udvdjZoIvm674f_Ob8L5R1bv_Dfyd_Ag3neGk</recordid><startdate>201706</startdate><enddate>201706</enddate><creator>Trunec, David</creator><creator>Zikán, Petr</creator><creator>Wagner, Jakub</creator><creator>Bonaventura, Zdeněk</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>201706</creationdate><title>Study of “source sheath” problem in PIC/MC simulation: Spherical geometry</title><author>Trunec, David ; Zikán, Petr ; Wagner, Jakub ; Bonaventura, Zdeněk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-db168492592c7f256d625c639a3c88cfa2e5c71a552473c619211c9bf3066c333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Boundary conditions</topic><topic>Charge distribution</topic><topic>Charged particles</topic><topic>Collisional plasmas</topic><topic>Computer simulation</topic><topic>Drift</topic><topic>Electric contacts</topic><topic>Electric fields</topic><topic>Electric potential</topic><topic>Iterative methods</topic><topic>Mathematical analysis</topic><topic>Particle density (concentration)</topic><topic>Particle in cell technique</topic><topic>Plasma physics</topic><topic>Sheaths</topic><topic>Velocity</topic><topic>Velocity distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Trunec, David</creatorcontrib><creatorcontrib>Zikán, Petr</creatorcontrib><creatorcontrib>Wagner, Jakub</creatorcontrib><creatorcontrib>Bonaventura, Zdeněk</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of plasmas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Trunec, David</au><au>Zikán, Petr</au><au>Wagner, Jakub</au><au>Bonaventura, Zdeněk</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study of “source sheath” problem in PIC/MC simulation: Spherical geometry</atitle><jtitle>Physics of plasmas</jtitle><date>2017-06</date><risdate>2017</risdate><volume>24</volume><issue>6</issue><issn>1070-664X</issn><eissn>1089-7674</eissn><coden>PHPAEN</coden><abstract>A method for treatment of boundary conditions and particle loading in a self-consistent semi-infinite Particle-In-Cell/Monte Carlo simulation is presented. A non-ionizing, collisional plasma in contact with an electrode was assumed. The simulation was performed for a spherical probe with constant probe potential. The motion of charged particles was calculated in three dimensions, but only the radial charge distribution and thus only radial electric field were assumed. The particle loading has to be done with an appropriate velocity distribution with a radial drift velocity. This drift velocity has to be calculated from the probe current, and therefore, a self-consistent (iterative) approach is necessary. Furthermore, correct values of particle densities and electric field potential at the outer boundary of the computational domain have to be set using asymptotic formulae for particle density and electric field potential. This approach removes the “source sheath” which is created artificially, if incorrect boundary conditions and velocity distributions of loaded particles are used. This approach is, however, feasible only for the case of a negative probe where asymptotic formulae are known.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4984990</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1070-664X
ispartof Physics of plasmas, 2017-06, Vol.24 (6)
issn 1070-664X
1089-7674
language eng
recordid cdi_scitation_primary_10_1063_1_4984990
source AIP Journals Complete; Alma/SFX Local Collection
subjects Boundary conditions
Charge distribution
Charged particles
Collisional plasmas
Computer simulation
Drift
Electric contacts
Electric fields
Electric potential
Iterative methods
Mathematical analysis
Particle density (concentration)
Particle in cell technique
Plasma physics
Sheaths
Velocity
Velocity distribution
title Study of “source sheath” problem in PIC/MC simulation: Spherical geometry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T09%3A43%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20of%20%E2%80%9Csource%20sheath%E2%80%9D%20problem%20in%20PIC/MC%20simulation:%20Spherical%20geometry&rft.jtitle=Physics%20of%20plasmas&rft.au=Trunec,%20David&rft.date=2017-06&rft.volume=24&rft.issue=6&rft.issn=1070-664X&rft.eissn=1089-7674&rft.coden=PHPAEN&rft_id=info:doi/10.1063/1.4984990&rft_dat=%3Cproquest_scita%3E2116103956%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2116103956&rft_id=info:pmid/&rfr_iscdi=true