Study of “source sheath” problem in PIC/MC simulation: Spherical geometry
A method for treatment of boundary conditions and particle loading in a self-consistent semi-infinite Particle-In-Cell/Monte Carlo simulation is presented. A non-ionizing, collisional plasma in contact with an electrode was assumed. The simulation was performed for a spherical probe with constant pr...
Gespeichert in:
Veröffentlicht in: | Physics of plasmas 2017-06, Vol.24 (6) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | |
container_title | Physics of plasmas |
container_volume | 24 |
creator | Trunec, David Zikán, Petr Wagner, Jakub Bonaventura, Zdeněk |
description | A method for treatment of boundary conditions and particle loading in a self-consistent semi-infinite Particle-In-Cell/Monte Carlo simulation is presented. A non-ionizing, collisional plasma in contact with an electrode was assumed. The simulation was performed for a spherical probe with constant probe potential. The motion of charged particles was calculated in three dimensions, but only the radial charge distribution and thus only radial electric field were assumed. The particle loading has to be done with an appropriate velocity distribution with a radial drift velocity. This drift velocity has to be calculated from the probe current, and therefore, a self-consistent (iterative) approach is necessary. Furthermore, correct values of particle densities and electric field potential at the outer boundary of the computational domain have to be set using asymptotic formulae for particle density and electric field potential. This approach removes the “source sheath” which is created artificially, if incorrect boundary conditions and velocity distributions of loaded particles are used. This approach is, however, feasible only for the case of a negative probe where asymptotic formulae are known. |
doi_str_mv | 10.1063/1.4984990 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_4984990</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2116103956</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-db168492592c7f256d625c639a3c88cfa2e5c71a552473c619211c9bf3066c333</originalsourceid><addsrcrecordid>eNp90M1KAzEQB_AgCtbqwTcIeFLYNh-b7MabLH4UWhSq4C2k2cRu2W3WZFforQ-iL9cncWtFD4KnmcOPmf8MAKcYDTDidIgHsUhjIdAe6GGUiijhSby_7RMUcR4_H4KjEBYIoZiztAcm06bNV9BZuFm_B9d6bWCYG9XMN-sPWHs3K00FiyV8GGXDSQZDUbWlagq3vITTem58oVUJX4yrTONXx-DAqjKYk-_aB08314_ZXTS-vx1lV-NIU5I0UT7DvAtJmCA6sYTxnBOmORWK6jTVVhHDdIIVYyROqOZYEIy1mFmKONeU0j44283tAr62JjRy0UVfditlJzlGVDDeqfOd0t6F4I2VtS8q5VcSI7n9lsTy-1udvdjZoIvm674f_Ob8L5R1bv_Dfyd_Ag3neGk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2116103956</pqid></control><display><type>article</type><title>Study of “source sheath” problem in PIC/MC simulation: Spherical geometry</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Trunec, David ; Zikán, Petr ; Wagner, Jakub ; Bonaventura, Zdeněk</creator><creatorcontrib>Trunec, David ; Zikán, Petr ; Wagner, Jakub ; Bonaventura, Zdeněk</creatorcontrib><description>A method for treatment of boundary conditions and particle loading in a self-consistent semi-infinite Particle-In-Cell/Monte Carlo simulation is presented. A non-ionizing, collisional plasma in contact with an electrode was assumed. The simulation was performed for a spherical probe with constant probe potential. The motion of charged particles was calculated in three dimensions, but only the radial charge distribution and thus only radial electric field were assumed. The particle loading has to be done with an appropriate velocity distribution with a radial drift velocity. This drift velocity has to be calculated from the probe current, and therefore, a self-consistent (iterative) approach is necessary. Furthermore, correct values of particle densities and electric field potential at the outer boundary of the computational domain have to be set using asymptotic formulae for particle density and electric field potential. This approach removes the “source sheath” which is created artificially, if incorrect boundary conditions and velocity distributions of loaded particles are used. This approach is, however, feasible only for the case of a negative probe where asymptotic formulae are known.</description><identifier>ISSN: 1070-664X</identifier><identifier>EISSN: 1089-7674</identifier><identifier>DOI: 10.1063/1.4984990</identifier><identifier>CODEN: PHPAEN</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Boundary conditions ; Charge distribution ; Charged particles ; Collisional plasmas ; Computer simulation ; Drift ; Electric contacts ; Electric fields ; Electric potential ; Iterative methods ; Mathematical analysis ; Particle density (concentration) ; Particle in cell technique ; Plasma physics ; Sheaths ; Velocity ; Velocity distribution</subject><ispartof>Physics of plasmas, 2017-06, Vol.24 (6)</ispartof><rights>Author(s)</rights><rights>2017 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-db168492592c7f256d625c639a3c88cfa2e5c71a552473c619211c9bf3066c333</citedby><cites>FETCH-LOGICAL-c327t-db168492592c7f256d625c639a3c88cfa2e5c71a552473c619211c9bf3066c333</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/pop/article-lookup/doi/10.1063/1.4984990$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76126</link.rule.ids></links><search><creatorcontrib>Trunec, David</creatorcontrib><creatorcontrib>Zikán, Petr</creatorcontrib><creatorcontrib>Wagner, Jakub</creatorcontrib><creatorcontrib>Bonaventura, Zdeněk</creatorcontrib><title>Study of “source sheath” problem in PIC/MC simulation: Spherical geometry</title><title>Physics of plasmas</title><description>A method for treatment of boundary conditions and particle loading in a self-consistent semi-infinite Particle-In-Cell/Monte Carlo simulation is presented. A non-ionizing, collisional plasma in contact with an electrode was assumed. The simulation was performed for a spherical probe with constant probe potential. The motion of charged particles was calculated in three dimensions, but only the radial charge distribution and thus only radial electric field were assumed. The particle loading has to be done with an appropriate velocity distribution with a radial drift velocity. This drift velocity has to be calculated from the probe current, and therefore, a self-consistent (iterative) approach is necessary. Furthermore, correct values of particle densities and electric field potential at the outer boundary of the computational domain have to be set using asymptotic formulae for particle density and electric field potential. This approach removes the “source sheath” which is created artificially, if incorrect boundary conditions and velocity distributions of loaded particles are used. This approach is, however, feasible only for the case of a negative probe where asymptotic formulae are known.</description><subject>Boundary conditions</subject><subject>Charge distribution</subject><subject>Charged particles</subject><subject>Collisional plasmas</subject><subject>Computer simulation</subject><subject>Drift</subject><subject>Electric contacts</subject><subject>Electric fields</subject><subject>Electric potential</subject><subject>Iterative methods</subject><subject>Mathematical analysis</subject><subject>Particle density (concentration)</subject><subject>Particle in cell technique</subject><subject>Plasma physics</subject><subject>Sheaths</subject><subject>Velocity</subject><subject>Velocity distribution</subject><issn>1070-664X</issn><issn>1089-7674</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp90M1KAzEQB_AgCtbqwTcIeFLYNh-b7MabLH4UWhSq4C2k2cRu2W3WZFforQ-iL9cncWtFD4KnmcOPmf8MAKcYDTDidIgHsUhjIdAe6GGUiijhSby_7RMUcR4_H4KjEBYIoZiztAcm06bNV9BZuFm_B9d6bWCYG9XMN-sPWHs3K00FiyV8GGXDSQZDUbWlagq3vITTem58oVUJX4yrTONXx-DAqjKYk-_aB08314_ZXTS-vx1lV-NIU5I0UT7DvAtJmCA6sYTxnBOmORWK6jTVVhHDdIIVYyROqOZYEIy1mFmKONeU0j44283tAr62JjRy0UVfditlJzlGVDDeqfOd0t6F4I2VtS8q5VcSI7n9lsTy-1udvdjZoIvm674f_Ob8L5R1bv_Dfyd_Ag3neGk</recordid><startdate>201706</startdate><enddate>201706</enddate><creator>Trunec, David</creator><creator>Zikán, Petr</creator><creator>Wagner, Jakub</creator><creator>Bonaventura, Zdeněk</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>201706</creationdate><title>Study of “source sheath” problem in PIC/MC simulation: Spherical geometry</title><author>Trunec, David ; Zikán, Petr ; Wagner, Jakub ; Bonaventura, Zdeněk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-db168492592c7f256d625c639a3c88cfa2e5c71a552473c619211c9bf3066c333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Boundary conditions</topic><topic>Charge distribution</topic><topic>Charged particles</topic><topic>Collisional plasmas</topic><topic>Computer simulation</topic><topic>Drift</topic><topic>Electric contacts</topic><topic>Electric fields</topic><topic>Electric potential</topic><topic>Iterative methods</topic><topic>Mathematical analysis</topic><topic>Particle density (concentration)</topic><topic>Particle in cell technique</topic><topic>Plasma physics</topic><topic>Sheaths</topic><topic>Velocity</topic><topic>Velocity distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Trunec, David</creatorcontrib><creatorcontrib>Zikán, Petr</creatorcontrib><creatorcontrib>Wagner, Jakub</creatorcontrib><creatorcontrib>Bonaventura, Zdeněk</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of plasmas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Trunec, David</au><au>Zikán, Petr</au><au>Wagner, Jakub</au><au>Bonaventura, Zdeněk</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study of “source sheath” problem in PIC/MC simulation: Spherical geometry</atitle><jtitle>Physics of plasmas</jtitle><date>2017-06</date><risdate>2017</risdate><volume>24</volume><issue>6</issue><issn>1070-664X</issn><eissn>1089-7674</eissn><coden>PHPAEN</coden><abstract>A method for treatment of boundary conditions and particle loading in a self-consistent semi-infinite Particle-In-Cell/Monte Carlo simulation is presented. A non-ionizing, collisional plasma in contact with an electrode was assumed. The simulation was performed for a spherical probe with constant probe potential. The motion of charged particles was calculated in three dimensions, but only the radial charge distribution and thus only radial electric field were assumed. The particle loading has to be done with an appropriate velocity distribution with a radial drift velocity. This drift velocity has to be calculated from the probe current, and therefore, a self-consistent (iterative) approach is necessary. Furthermore, correct values of particle densities and electric field potential at the outer boundary of the computational domain have to be set using asymptotic formulae for particle density and electric field potential. This approach removes the “source sheath” which is created artificially, if incorrect boundary conditions and velocity distributions of loaded particles are used. This approach is, however, feasible only for the case of a negative probe where asymptotic formulae are known.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4984990</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-664X |
ispartof | Physics of plasmas, 2017-06, Vol.24 (6) |
issn | 1070-664X 1089-7674 |
language | eng |
recordid | cdi_scitation_primary_10_1063_1_4984990 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Boundary conditions Charge distribution Charged particles Collisional plasmas Computer simulation Drift Electric contacts Electric fields Electric potential Iterative methods Mathematical analysis Particle density (concentration) Particle in cell technique Plasma physics Sheaths Velocity Velocity distribution |
title | Study of “source sheath” problem in PIC/MC simulation: Spherical geometry |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T09%3A43%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20of%20%E2%80%9Csource%20sheath%E2%80%9D%20problem%20in%20PIC/MC%20simulation:%20Spherical%20geometry&rft.jtitle=Physics%20of%20plasmas&rft.au=Trunec,%20David&rft.date=2017-06&rft.volume=24&rft.issue=6&rft.issn=1070-664X&rft.eissn=1089-7674&rft.coden=PHPAEN&rft_id=info:doi/10.1063/1.4984990&rft_dat=%3Cproquest_scita%3E2116103956%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2116103956&rft_id=info:pmid/&rfr_iscdi=true |