A complex-valued first integral of Navier-Stokes equations: Unsteady Couette flow in a corrugated channel system

For a two-dimensional incompressible viscous flow, a first integral of the governing equations of motion is constructed based on a reformulation of the unsteady Navier-Stokes equations in terms of complex variables and the subsequent introduction of a complex potential field; complementary solid and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2017-04, Vol.58 (4), p.1
Hauptverfasser: Marner, F., Gaskell, P. H., Scholle, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page 1
container_title Journal of mathematical physics
container_volume 58
creator Marner, F.
Gaskell, P. H.
Scholle, M.
description For a two-dimensional incompressible viscous flow, a first integral of the governing equations of motion is constructed based on a reformulation of the unsteady Navier-Stokes equations in terms of complex variables and the subsequent introduction of a complex potential field; complementary solid and free surface boundary conditions are formulated. The methodology is used to solve the challenging problem of unsteady Couette flow between two sinusoidally varying corrugated rigid surfaces utilising two modelling approaches to highlight the versatility of the first integral. In the Stokes flow limit, the results obtained in the case of steady flow are found to be in excellent agreement with corresponding investigations in the open literature. Similarly, for unsteady flow, the results are in accord with related investigations, exploring material transfer between trapped eddies and the associated bulk flow, and vice versa. It is shown how the work relates to the classical complex variable method for solving the biharmonic problem and perspectives are provided as to how the first integral may be further utilised to investigate other fluid flow features.
doi_str_mv 10.1063/1.4980086
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_4980086</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1896088358</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-19de8268122f6c18c256ec1e781368cde5dee5a9269b836f88472c1c5144cbdc3</originalsourceid><addsrcrecordid>eNp9kD9PwzAQRy0EEqUw8A0sMYGU4nMS58JWVfyTKhigc-Q6l5KSxq3tFPrtCbQz0y3v3k96jF2CGIFQ8S2MkhyFQHXEBiAwjzKV4jEbCCFlJBPEU3bm_VIIAEySAVuPubGrdUPf0VY3HZW8qp0PvG4DLZxuuK34i97W5KK3YD_Jc9p0OtS29Xd81vpAutzxie0oBOJVY7_6V657qXPdQodeaD5021LD_a6nV-fspNKNp4vDHbLZw_375Cmavj4-T8bTyMQyCxHkJaFUCFJWygAamSoyQBlCrNCUlJZEqc6lyucYqwoxyaQBk0KSmHlp4iG72nvXzm468qFY2s61_WQBmCuBGKfYU9d7yjjrvaOqWLt6pd2uAFH8Bi2gOATt2Zs9600d_hL8A_8A9Jp2Ig</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1896088358</pqid></control><display><type>article</type><title>A complex-valued first integral of Navier-Stokes equations: Unsteady Couette flow in a corrugated channel system</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Marner, F. ; Gaskell, P. H. ; Scholle, M.</creator><creatorcontrib>Marner, F. ; Gaskell, P. H. ; Scholle, M.</creatorcontrib><description>For a two-dimensional incompressible viscous flow, a first integral of the governing equations of motion is constructed based on a reformulation of the unsteady Navier-Stokes equations in terms of complex variables and the subsequent introduction of a complex potential field; complementary solid and free surface boundary conditions are formulated. The methodology is used to solve the challenging problem of unsteady Couette flow between two sinusoidally varying corrugated rigid surfaces utilising two modelling approaches to highlight the versatility of the first integral. In the Stokes flow limit, the results obtained in the case of steady flow are found to be in excellent agreement with corresponding investigations in the open literature. Similarly, for unsteady flow, the results are in accord with related investigations, exploring material transfer between trapped eddies and the associated bulk flow, and vice versa. It is shown how the work relates to the classical complex variable method for solving the biharmonic problem and perspectives are provided as to how the first integral may be further utilised to investigate other fluid flow features.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.4980086</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>New York: American Institute of Physics</publisher><subject>Boundary conditions ; Mathematical problems ; Navier-Stokes equations ; Solid surfaces</subject><ispartof>Journal of mathematical physics, 2017-04, Vol.58 (4), p.1</ispartof><rights>Author(s)</rights><rights>Copyright American Institute of Physics Apr 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-19de8268122f6c18c256ec1e781368cde5dee5a9269b836f88472c1c5144cbdc3</citedby><cites>FETCH-LOGICAL-c327t-19de8268122f6c18c256ec1e781368cde5dee5a9269b836f88472c1c5144cbdc3</cites><orcidid>0000-0001-6965-3454 ; 0000-0001-6945-5247</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.4980086$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4510,27923,27924,76155</link.rule.ids></links><search><creatorcontrib>Marner, F.</creatorcontrib><creatorcontrib>Gaskell, P. H.</creatorcontrib><creatorcontrib>Scholle, M.</creatorcontrib><title>A complex-valued first integral of Navier-Stokes equations: Unsteady Couette flow in a corrugated channel system</title><title>Journal of mathematical physics</title><description>For a two-dimensional incompressible viscous flow, a first integral of the governing equations of motion is constructed based on a reformulation of the unsteady Navier-Stokes equations in terms of complex variables and the subsequent introduction of a complex potential field; complementary solid and free surface boundary conditions are formulated. The methodology is used to solve the challenging problem of unsteady Couette flow between two sinusoidally varying corrugated rigid surfaces utilising two modelling approaches to highlight the versatility of the first integral. In the Stokes flow limit, the results obtained in the case of steady flow are found to be in excellent agreement with corresponding investigations in the open literature. Similarly, for unsteady flow, the results are in accord with related investigations, exploring material transfer between trapped eddies and the associated bulk flow, and vice versa. It is shown how the work relates to the classical complex variable method for solving the biharmonic problem and perspectives are provided as to how the first integral may be further utilised to investigate other fluid flow features.</description><subject>Boundary conditions</subject><subject>Mathematical problems</subject><subject>Navier-Stokes equations</subject><subject>Solid surfaces</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kD9PwzAQRy0EEqUw8A0sMYGU4nMS58JWVfyTKhigc-Q6l5KSxq3tFPrtCbQz0y3v3k96jF2CGIFQ8S2MkhyFQHXEBiAwjzKV4jEbCCFlJBPEU3bm_VIIAEySAVuPubGrdUPf0VY3HZW8qp0PvG4DLZxuuK34i97W5KK3YD_Jc9p0OtS29Xd81vpAutzxie0oBOJVY7_6V657qXPdQodeaD5021LD_a6nV-fspNKNp4vDHbLZw_375Cmavj4-T8bTyMQyCxHkJaFUCFJWygAamSoyQBlCrNCUlJZEqc6lyucYqwoxyaQBk0KSmHlp4iG72nvXzm468qFY2s61_WQBmCuBGKfYU9d7yjjrvaOqWLt6pd2uAFH8Bi2gOATt2Zs9600d_hL8A_8A9Jp2Ig</recordid><startdate>201704</startdate><enddate>201704</enddate><creator>Marner, F.</creator><creator>Gaskell, P. H.</creator><creator>Scholle, M.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6965-3454</orcidid><orcidid>https://orcid.org/0000-0001-6945-5247</orcidid></search><sort><creationdate>201704</creationdate><title>A complex-valued first integral of Navier-Stokes equations: Unsteady Couette flow in a corrugated channel system</title><author>Marner, F. ; Gaskell, P. H. ; Scholle, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-19de8268122f6c18c256ec1e781368cde5dee5a9269b836f88472c1c5144cbdc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Boundary conditions</topic><topic>Mathematical problems</topic><topic>Navier-Stokes equations</topic><topic>Solid surfaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marner, F.</creatorcontrib><creatorcontrib>Gaskell, P. H.</creatorcontrib><creatorcontrib>Scholle, M.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marner, F.</au><au>Gaskell, P. H.</au><au>Scholle, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A complex-valued first integral of Navier-Stokes equations: Unsteady Couette flow in a corrugated channel system</atitle><jtitle>Journal of mathematical physics</jtitle><date>2017-04</date><risdate>2017</risdate><volume>58</volume><issue>4</issue><spage>1</spage><pages>1-</pages><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>For a two-dimensional incompressible viscous flow, a first integral of the governing equations of motion is constructed based on a reformulation of the unsteady Navier-Stokes equations in terms of complex variables and the subsequent introduction of a complex potential field; complementary solid and free surface boundary conditions are formulated. The methodology is used to solve the challenging problem of unsteady Couette flow between two sinusoidally varying corrugated rigid surfaces utilising two modelling approaches to highlight the versatility of the first integral. In the Stokes flow limit, the results obtained in the case of steady flow are found to be in excellent agreement with corresponding investigations in the open literature. Similarly, for unsteady flow, the results are in accord with related investigations, exploring material transfer between trapped eddies and the associated bulk flow, and vice versa. It is shown how the work relates to the classical complex variable method for solving the biharmonic problem and perspectives are provided as to how the first integral may be further utilised to investigate other fluid flow features.</abstract><cop>New York</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4980086</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-6965-3454</orcidid><orcidid>https://orcid.org/0000-0001-6945-5247</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-2488
ispartof Journal of mathematical physics, 2017-04, Vol.58 (4), p.1
issn 0022-2488
1089-7658
language eng
recordid cdi_scitation_primary_10_1063_1_4980086
source AIP Journals Complete; Alma/SFX Local Collection
subjects Boundary conditions
Mathematical problems
Navier-Stokes equations
Solid surfaces
title A complex-valued first integral of Navier-Stokes equations: Unsteady Couette flow in a corrugated channel system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T06%3A38%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20complex-valued%20first%20integral%20of%20Navier-Stokes%20equations:%20Unsteady%20Couette%20flow%20in%20a%20corrugated%20channel%20system&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Marner,%20F.&rft.date=2017-04&rft.volume=58&rft.issue=4&rft.spage=1&rft.pages=1-&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.4980086&rft_dat=%3Cproquest_scita%3E1896088358%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1896088358&rft_id=info:pmid/&rfr_iscdi=true