Modeling of Mean-VaR portfolio optimization by risk tolerance when the utility function is quadratic

The problems of investing in financial assets are to choose a combination of weighting a portfolio can be maximized return expectations and minimizing the risk. This paper discusses the modeling of Mean-VaR portfolio optimization by risk tolerance, when square-shaped utility functions. It is assumed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Sukono, Sidi, Pramono, Bon, Abdul Talib bin, Supian, Sudradjat
Format: Tagungsbericht
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 1827
creator Sukono
Sidi, Pramono
Bon, Abdul Talib bin
Supian, Sudradjat
description The problems of investing in financial assets are to choose a combination of weighting a portfolio can be maximized return expectations and minimizing the risk. This paper discusses the modeling of Mean-VaR portfolio optimization by risk tolerance, when square-shaped utility functions. It is assumed that the asset return has a certain distribution, and the risk of the portfolio is measured using the Value-at-Risk (VaR). So, the process of optimization of the portfolio is done based on the model of Mean-VaR portfolio optimization model for the Mean-VaR done using matrix algebra approach, and the Lagrange multiplier method, as well as Khun-Tucker. The results of the modeling portfolio optimization is in the form of a weighting vector equations depends on the vector mean return vector assets, identities, and matrix covariance between return of assets, as well as a factor in risk tolerance. As an illustration of numeric, analyzed five shares traded on the stock market in Indonesia. Based on analysis of five stocks return data gained the vector of weight composition and graphics of efficient surface of portfolio. Vector composition weighting weights and efficient surface charts can be used as a guide for investors in decisions to invest.
doi_str_mv 10.1063/1.4979451
format Conference Proceeding
fullrecord <record><control><sourceid>scitation</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_4979451</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>acp</sourcerecordid><originalsourceid>FETCH-LOGICAL-c300t-5ff5e475702ecdcba6af4ca3d2bd69043f04bb1b46afbfcf8f2d5490d75088733</originalsourceid><addsrcrecordid>eNp9kE1LxDAYhIMoWFcP_oOcha5vmqRpj7L4BbsIouKt5NONdpuaZpX6613XBW-eBoZnhmEQOiUwJVDSczJltagZJ3soI5yTXJSk3EcZQM3ygtHnQ3Q0DK8ARS1ElSGzCMa2vnvBweGFlV3-JO9xH2JyofUBhz75lf-SyYcOqxFHP7zhFFobZact_lzaDqelxevkW59G7Nad3rJ-wO9raeImqY_RgZPtYE92OkGPV5cPs5t8fnd9O7uY55oCpJw7xy0TXEBhtdFKltIxLakplClrYNQBU4ootvGV065yheGsBiM4VJWgdILOfnsH7dN2ctNHv5JxbAg0P_80pNn98x_8EeIf2PTG0W_ncGkx</addsrcrecordid><sourcetype>Enrichment Source</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Modeling of Mean-VaR portfolio optimization by risk tolerance when the utility function is quadratic</title><source>AIP Journals Complete</source><creator>Sukono ; Sidi, Pramono ; Bon, Abdul Talib bin ; Supian, Sudradjat</creator><contributor>Suprijadi, Jadi ; Suparman, Yusep ; Andriyana, Yudhie</contributor><creatorcontrib>Sukono ; Sidi, Pramono ; Bon, Abdul Talib bin ; Supian, Sudradjat ; Suprijadi, Jadi ; Suparman, Yusep ; Andriyana, Yudhie</creatorcontrib><description>The problems of investing in financial assets are to choose a combination of weighting a portfolio can be maximized return expectations and minimizing the risk. This paper discusses the modeling of Mean-VaR portfolio optimization by risk tolerance, when square-shaped utility functions. It is assumed that the asset return has a certain distribution, and the risk of the portfolio is measured using the Value-at-Risk (VaR). So, the process of optimization of the portfolio is done based on the model of Mean-VaR portfolio optimization model for the Mean-VaR done using matrix algebra approach, and the Lagrange multiplier method, as well as Khun-Tucker. The results of the modeling portfolio optimization is in the form of a weighting vector equations depends on the vector mean return vector assets, identities, and matrix covariance between return of assets, as well as a factor in risk tolerance. As an illustration of numeric, analyzed five shares traded on the stock market in Indonesia. Based on analysis of five stocks return data gained the vector of weight composition and graphics of efficient surface of portfolio. Vector composition weighting weights and efficient surface charts can be used as a guide for investors in decisions to invest.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.4979451</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><ispartof>AIP conference proceedings, 2017, Vol.1827 (1)</ispartof><rights>Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c300t-5ff5e475702ecdcba6af4ca3d2bd69043f04bb1b46afbfcf8f2d5490d75088733</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/1.4979451$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids></links><search><contributor>Suprijadi, Jadi</contributor><contributor>Suparman, Yusep</contributor><contributor>Andriyana, Yudhie</contributor><creatorcontrib>Sukono</creatorcontrib><creatorcontrib>Sidi, Pramono</creatorcontrib><creatorcontrib>Bon, Abdul Talib bin</creatorcontrib><creatorcontrib>Supian, Sudradjat</creatorcontrib><title>Modeling of Mean-VaR portfolio optimization by risk tolerance when the utility function is quadratic</title><title>AIP conference proceedings</title><description>The problems of investing in financial assets are to choose a combination of weighting a portfolio can be maximized return expectations and minimizing the risk. This paper discusses the modeling of Mean-VaR portfolio optimization by risk tolerance, when square-shaped utility functions. It is assumed that the asset return has a certain distribution, and the risk of the portfolio is measured using the Value-at-Risk (VaR). So, the process of optimization of the portfolio is done based on the model of Mean-VaR portfolio optimization model for the Mean-VaR done using matrix algebra approach, and the Lagrange multiplier method, as well as Khun-Tucker. The results of the modeling portfolio optimization is in the form of a weighting vector equations depends on the vector mean return vector assets, identities, and matrix covariance between return of assets, as well as a factor in risk tolerance. As an illustration of numeric, analyzed five shares traded on the stock market in Indonesia. Based on analysis of five stocks return data gained the vector of weight composition and graphics of efficient surface of portfolio. Vector composition weighting weights and efficient surface charts can be used as a guide for investors in decisions to invest.</description><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2017</creationdate><recordtype>conference_proceeding</recordtype><sourceid/><recordid>eNp9kE1LxDAYhIMoWFcP_oOcha5vmqRpj7L4BbsIouKt5NONdpuaZpX6613XBW-eBoZnhmEQOiUwJVDSczJltagZJ3soI5yTXJSk3EcZQM3ygtHnQ3Q0DK8ARS1ElSGzCMa2vnvBweGFlV3-JO9xH2JyofUBhz75lf-SyYcOqxFHP7zhFFobZact_lzaDqelxevkW59G7Nad3rJ-wO9raeImqY_RgZPtYE92OkGPV5cPs5t8fnd9O7uY55oCpJw7xy0TXEBhtdFKltIxLakplClrYNQBU4ootvGV065yheGsBiM4VJWgdILOfnsH7dN2ctNHv5JxbAg0P_80pNn98x_8EeIf2PTG0W_ncGkx</recordid><startdate>20170330</startdate><enddate>20170330</enddate><creator>Sukono</creator><creator>Sidi, Pramono</creator><creator>Bon, Abdul Talib bin</creator><creator>Supian, Sudradjat</creator><scope/></search><sort><creationdate>20170330</creationdate><title>Modeling of Mean-VaR portfolio optimization by risk tolerance when the utility function is quadratic</title><author>Sukono ; Sidi, Pramono ; Bon, Abdul Talib bin ; Supian, Sudradjat</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c300t-5ff5e475702ecdcba6af4ca3d2bd69043f04bb1b46afbfcf8f2d5490d75088733</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sukono</creatorcontrib><creatorcontrib>Sidi, Pramono</creatorcontrib><creatorcontrib>Bon, Abdul Talib bin</creatorcontrib><creatorcontrib>Supian, Sudradjat</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sukono</au><au>Sidi, Pramono</au><au>Bon, Abdul Talib bin</au><au>Supian, Sudradjat</au><au>Suprijadi, Jadi</au><au>Suparman, Yusep</au><au>Andriyana, Yudhie</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Modeling of Mean-VaR portfolio optimization by risk tolerance when the utility function is quadratic</atitle><btitle>AIP conference proceedings</btitle><date>2017-03-30</date><risdate>2017</risdate><volume>1827</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>The problems of investing in financial assets are to choose a combination of weighting a portfolio can be maximized return expectations and minimizing the risk. This paper discusses the modeling of Mean-VaR portfolio optimization by risk tolerance, when square-shaped utility functions. It is assumed that the asset return has a certain distribution, and the risk of the portfolio is measured using the Value-at-Risk (VaR). So, the process of optimization of the portfolio is done based on the model of Mean-VaR portfolio optimization model for the Mean-VaR done using matrix algebra approach, and the Lagrange multiplier method, as well as Khun-Tucker. The results of the modeling portfolio optimization is in the form of a weighting vector equations depends on the vector mean return vector assets, identities, and matrix covariance between return of assets, as well as a factor in risk tolerance. As an illustration of numeric, analyzed five shares traded on the stock market in Indonesia. Based on analysis of five stocks return data gained the vector of weight composition and graphics of efficient surface of portfolio. Vector composition weighting weights and efficient surface charts can be used as a guide for investors in decisions to invest.</abstract><doi>10.1063/1.4979451</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2017, Vol.1827 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_scitation_primary_10_1063_1_4979451
source AIP Journals Complete
title Modeling of Mean-VaR portfolio optimization by risk tolerance when the utility function is quadratic
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A43%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Modeling%20of%20Mean-VaR%20portfolio%20optimization%20by%20risk%20tolerance%20when%20the%20utility%20function%20is%20quadratic&rft.btitle=AIP%20conference%20proceedings&rft.au=Sukono&rft.date=2017-03-30&rft.volume=1827&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/1.4979451&rft_dat=%3Cscitation%3Eacp%3C/scitation%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true