Annealing shallow Si/SiO2 interface traps in electron-beam irradiated high-mobility metal-oxide-silicon transistors
Electron-beam (e-beam) lithography is commonly used in fabricating metal-oxide-silicon (MOS) quantum devices but creates defects at the Si/SiO2 interface. Here, we show that a forming gas anneal is effective at removing shallow defects (≤4 meV below the conduction band edge) created by an e-beam exp...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2017-03, Vol.110 (12) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 12 |
container_start_page | |
container_title | Applied physics letters |
container_volume | 110 |
creator | Kim, J.-S. Tyryshkin, A. M. Lyon, S. A. |
description | Electron-beam (e-beam) lithography is commonly used in fabricating metal-oxide-silicon (MOS) quantum devices but creates defects at the Si/SiO2 interface. Here, we show that a forming gas anneal is effective at removing shallow defects (≤4 meV below the conduction band edge) created by an e-beam exposure by measuring the density of shallow electron traps in two sets of high-mobility MOS field-effect transistors. One set was irradiated with an electron-beam (10 keV, 40 μC/cm2) and was subsequently annealed in forming gas while the other set remained unexposed. Low temperature (335 mK) transport measurements indicate that the forming gas anneal recovers the e-beam exposed sample's peak mobility (14 000 cm2/Vs) to within a factor of two of the unexposed sample's mobility (23 000 cm2/Vs). Using electron spin resonance (ESR) to measure the density of shallow traps, we find that the two sets of devices are nearly identical, indicating the forming gas anneal is sufficient to anneal out shallow defects generated by the e-beam exposure. Fitting the two sets of devices' transport data to a percolation transition model, we extract a T = 0 percolation threshold density in quantitative agreement with our lowest temperature ESR-measured trap densities. |
doi_str_mv | 10.1063/1.4979035 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_4979035</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2124532098</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-a54451941c35ac98401580cbd34066ecde378a5ac7ba628002d662021b8531a63</originalsourceid><addsrcrecordid>eNqdkEtLAzEUhYMoWKsL_8GAK4XYPCaZmWUpvqDQRXUd7mQybcpMUpNU7b93SgvuXR3OuR_nwkHolpJHSiSf0Me8KirCxRkaUVIUmFNanqMRIYRjWQl6ia5i3AxWMM5HKE6dM9BZt8riGrrOf2dLO1naBcusSya0oE2WAmzj4DPTGZ2Cd7g20Gc2BGgsJNNka7ta497XtrNpn_UmQYf9j20MjkOkvTt0uGhj8iFeo4sWumhuTjpGH89P77NXPF-8vM2mc6xZxRIGkeeCVjnVXICuypxQURJdNzwnUhrdGF6UMJyKGiQrCWGNlIwwWpeCU5B8jO6OvdvgP3cmJrXxu-CGl4pRlgvOSFUO1P2R0sHHGEyrtsH2EPaKEnXYVFF12nRgH45s1DZBst79D_7y4Q9U26blv0lyhWQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2124532098</pqid></control><display><type>article</type><title>Annealing shallow Si/SiO2 interface traps in electron-beam irradiated high-mobility metal-oxide-silicon transistors</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Kim, J.-S. ; Tyryshkin, A. M. ; Lyon, S. A.</creator><creatorcontrib>Kim, J.-S. ; Tyryshkin, A. M. ; Lyon, S. A.</creatorcontrib><description>Electron-beam (e-beam) lithography is commonly used in fabricating metal-oxide-silicon (MOS) quantum devices but creates defects at the Si/SiO2 interface. Here, we show that a forming gas anneal is effective at removing shallow defects (≤4 meV below the conduction band edge) created by an e-beam exposure by measuring the density of shallow electron traps in two sets of high-mobility MOS field-effect transistors. One set was irradiated with an electron-beam (10 keV, 40 μC/cm2) and was subsequently annealed in forming gas while the other set remained unexposed. Low temperature (335 mK) transport measurements indicate that the forming gas anneal recovers the e-beam exposed sample's peak mobility (14 000 cm2/Vs) to within a factor of two of the unexposed sample's mobility (23 000 cm2/Vs). Using electron spin resonance (ESR) to measure the density of shallow traps, we find that the two sets of devices are nearly identical, indicating the forming gas anneal is sufficient to anneal out shallow defects generated by the e-beam exposure. Fitting the two sets of devices' transport data to a percolation transition model, we extract a T = 0 percolation threshold density in quantitative agreement with our lowest temperature ESR-measured trap densities.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.4979035</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Conduction bands ; Defect annealing ; Defects ; Density ; Electron beam lithography ; Electron paramagnetic resonance ; Electron spin ; Electron traps ; Electronic devices ; Exposure ; Field effect transistors ; Metal oxides ; Percolation ; Semiconductor devices ; Silicon dioxide ; Silicon transistors ; Spin resonance ; Transistors ; Transport</subject><ispartof>Applied physics letters, 2017-03, Vol.110 (12)</ispartof><rights>Author(s)</rights><rights>2017 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-a54451941c35ac98401580cbd34066ecde378a5ac7ba628002d662021b8531a63</citedby><cites>FETCH-LOGICAL-c292t-a54451941c35ac98401580cbd34066ecde378a5ac7ba628002d662021b8531a63</cites><orcidid>0000-0003-2892-8022</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/1.4979035$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids></links><search><creatorcontrib>Kim, J.-S.</creatorcontrib><creatorcontrib>Tyryshkin, A. M.</creatorcontrib><creatorcontrib>Lyon, S. A.</creatorcontrib><title>Annealing shallow Si/SiO2 interface traps in electron-beam irradiated high-mobility metal-oxide-silicon transistors</title><title>Applied physics letters</title><description>Electron-beam (e-beam) lithography is commonly used in fabricating metal-oxide-silicon (MOS) quantum devices but creates defects at the Si/SiO2 interface. Here, we show that a forming gas anneal is effective at removing shallow defects (≤4 meV below the conduction band edge) created by an e-beam exposure by measuring the density of shallow electron traps in two sets of high-mobility MOS field-effect transistors. One set was irradiated with an electron-beam (10 keV, 40 μC/cm2) and was subsequently annealed in forming gas while the other set remained unexposed. Low temperature (335 mK) transport measurements indicate that the forming gas anneal recovers the e-beam exposed sample's peak mobility (14 000 cm2/Vs) to within a factor of two of the unexposed sample's mobility (23 000 cm2/Vs). Using electron spin resonance (ESR) to measure the density of shallow traps, we find that the two sets of devices are nearly identical, indicating the forming gas anneal is sufficient to anneal out shallow defects generated by the e-beam exposure. Fitting the two sets of devices' transport data to a percolation transition model, we extract a T = 0 percolation threshold density in quantitative agreement with our lowest temperature ESR-measured trap densities.</description><subject>Applied physics</subject><subject>Conduction bands</subject><subject>Defect annealing</subject><subject>Defects</subject><subject>Density</subject><subject>Electron beam lithography</subject><subject>Electron paramagnetic resonance</subject><subject>Electron spin</subject><subject>Electron traps</subject><subject>Electronic devices</subject><subject>Exposure</subject><subject>Field effect transistors</subject><subject>Metal oxides</subject><subject>Percolation</subject><subject>Semiconductor devices</subject><subject>Silicon dioxide</subject><subject>Silicon transistors</subject><subject>Spin resonance</subject><subject>Transistors</subject><subject>Transport</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqdkEtLAzEUhYMoWKsL_8GAK4XYPCaZmWUpvqDQRXUd7mQybcpMUpNU7b93SgvuXR3OuR_nwkHolpJHSiSf0Me8KirCxRkaUVIUmFNanqMRIYRjWQl6ia5i3AxWMM5HKE6dM9BZt8riGrrOf2dLO1naBcusSya0oE2WAmzj4DPTGZ2Cd7g20Gc2BGgsJNNka7ta497XtrNpn_UmQYf9j20MjkOkvTt0uGhj8iFeo4sWumhuTjpGH89P77NXPF-8vM2mc6xZxRIGkeeCVjnVXICuypxQURJdNzwnUhrdGF6UMJyKGiQrCWGNlIwwWpeCU5B8jO6OvdvgP3cmJrXxu-CGl4pRlgvOSFUO1P2R0sHHGEyrtsH2EPaKEnXYVFF12nRgH45s1DZBst79D_7y4Q9U26blv0lyhWQ</recordid><startdate>20170320</startdate><enddate>20170320</enddate><creator>Kim, J.-S.</creator><creator>Tyryshkin, A. M.</creator><creator>Lyon, S. A.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2892-8022</orcidid></search><sort><creationdate>20170320</creationdate><title>Annealing shallow Si/SiO2 interface traps in electron-beam irradiated high-mobility metal-oxide-silicon transistors</title><author>Kim, J.-S. ; Tyryshkin, A. M. ; Lyon, S. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-a54451941c35ac98401580cbd34066ecde378a5ac7ba628002d662021b8531a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Applied physics</topic><topic>Conduction bands</topic><topic>Defect annealing</topic><topic>Defects</topic><topic>Density</topic><topic>Electron beam lithography</topic><topic>Electron paramagnetic resonance</topic><topic>Electron spin</topic><topic>Electron traps</topic><topic>Electronic devices</topic><topic>Exposure</topic><topic>Field effect transistors</topic><topic>Metal oxides</topic><topic>Percolation</topic><topic>Semiconductor devices</topic><topic>Silicon dioxide</topic><topic>Silicon transistors</topic><topic>Spin resonance</topic><topic>Transistors</topic><topic>Transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, J.-S.</creatorcontrib><creatorcontrib>Tyryshkin, A. M.</creatorcontrib><creatorcontrib>Lyon, S. A.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, J.-S.</au><au>Tyryshkin, A. M.</au><au>Lyon, S. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Annealing shallow Si/SiO2 interface traps in electron-beam irradiated high-mobility metal-oxide-silicon transistors</atitle><jtitle>Applied physics letters</jtitle><date>2017-03-20</date><risdate>2017</risdate><volume>110</volume><issue>12</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Electron-beam (e-beam) lithography is commonly used in fabricating metal-oxide-silicon (MOS) quantum devices but creates defects at the Si/SiO2 interface. Here, we show that a forming gas anneal is effective at removing shallow defects (≤4 meV below the conduction band edge) created by an e-beam exposure by measuring the density of shallow electron traps in two sets of high-mobility MOS field-effect transistors. One set was irradiated with an electron-beam (10 keV, 40 μC/cm2) and was subsequently annealed in forming gas while the other set remained unexposed. Low temperature (335 mK) transport measurements indicate that the forming gas anneal recovers the e-beam exposed sample's peak mobility (14 000 cm2/Vs) to within a factor of two of the unexposed sample's mobility (23 000 cm2/Vs). Using electron spin resonance (ESR) to measure the density of shallow traps, we find that the two sets of devices are nearly identical, indicating the forming gas anneal is sufficient to anneal out shallow defects generated by the e-beam exposure. Fitting the two sets of devices' transport data to a percolation transition model, we extract a T = 0 percolation threshold density in quantitative agreement with our lowest temperature ESR-measured trap densities.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4979035</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0003-2892-8022</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2017-03, Vol.110 (12) |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_scitation_primary_10_1063_1_4979035 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Applied physics Conduction bands Defect annealing Defects Density Electron beam lithography Electron paramagnetic resonance Electron spin Electron traps Electronic devices Exposure Field effect transistors Metal oxides Percolation Semiconductor devices Silicon dioxide Silicon transistors Spin resonance Transistors Transport |
title | Annealing shallow Si/SiO2 interface traps in electron-beam irradiated high-mobility metal-oxide-silicon transistors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T04%3A23%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Annealing%20shallow%20Si/SiO2%20interface%20traps%20in%20electron-beam%20irradiated%20high-mobility%20metal-oxide-silicon%20transistors&rft.jtitle=Applied%20physics%20letters&rft.au=Kim,%20J.-S.&rft.date=2017-03-20&rft.volume=110&rft.issue=12&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/1.4979035&rft_dat=%3Cproquest_scita%3E2124532098%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2124532098&rft_id=info:pmid/&rfr_iscdi=true |