Annealing shallow Si/SiO2 interface traps in electron-beam irradiated high-mobility metal-oxide-silicon transistors

Electron-beam (e-beam) lithography is commonly used in fabricating metal-oxide-silicon (MOS) quantum devices but creates defects at the Si/SiO2 interface. Here, we show that a forming gas anneal is effective at removing shallow defects (≤4 meV below the conduction band edge) created by an e-beam exp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2017-03, Vol.110 (12)
Hauptverfasser: Kim, J.-S., Tyryshkin, A. M., Lyon, S. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page
container_title Applied physics letters
container_volume 110
creator Kim, J.-S.
Tyryshkin, A. M.
Lyon, S. A.
description Electron-beam (e-beam) lithography is commonly used in fabricating metal-oxide-silicon (MOS) quantum devices but creates defects at the Si/SiO2 interface. Here, we show that a forming gas anneal is effective at removing shallow defects (≤4 meV below the conduction band edge) created by an e-beam exposure by measuring the density of shallow electron traps in two sets of high-mobility MOS field-effect transistors. One set was irradiated with an electron-beam (10 keV, 40 μC/cm2) and was subsequently annealed in forming gas while the other set remained unexposed. Low temperature (335 mK) transport measurements indicate that the forming gas anneal recovers the e-beam exposed sample's peak mobility (14 000 cm2/Vs) to within a factor of two of the unexposed sample's mobility (23 000 cm2/Vs). Using electron spin resonance (ESR) to measure the density of shallow traps, we find that the two sets of devices are nearly identical, indicating the forming gas anneal is sufficient to anneal out shallow defects generated by the e-beam exposure. Fitting the two sets of devices' transport data to a percolation transition model, we extract a T = 0 percolation threshold density in quantitative agreement with our lowest temperature ESR-measured trap densities.
doi_str_mv 10.1063/1.4979035
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_4979035</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2124532098</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-a54451941c35ac98401580cbd34066ecde378a5ac7ba628002d662021b8531a63</originalsourceid><addsrcrecordid>eNqdkEtLAzEUhYMoWKsL_8GAK4XYPCaZmWUpvqDQRXUd7mQybcpMUpNU7b93SgvuXR3OuR_nwkHolpJHSiSf0Me8KirCxRkaUVIUmFNanqMRIYRjWQl6ia5i3AxWMM5HKE6dM9BZt8riGrrOf2dLO1naBcusSya0oE2WAmzj4DPTGZ2Cd7g20Gc2BGgsJNNka7ta497XtrNpn_UmQYf9j20MjkOkvTt0uGhj8iFeo4sWumhuTjpGH89P77NXPF-8vM2mc6xZxRIGkeeCVjnVXICuypxQURJdNzwnUhrdGF6UMJyKGiQrCWGNlIwwWpeCU5B8jO6OvdvgP3cmJrXxu-CGl4pRlgvOSFUO1P2R0sHHGEyrtsH2EPaKEnXYVFF12nRgH45s1DZBst79D_7y4Q9U26blv0lyhWQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2124532098</pqid></control><display><type>article</type><title>Annealing shallow Si/SiO2 interface traps in electron-beam irradiated high-mobility metal-oxide-silicon transistors</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Kim, J.-S. ; Tyryshkin, A. M. ; Lyon, S. A.</creator><creatorcontrib>Kim, J.-S. ; Tyryshkin, A. M. ; Lyon, S. A.</creatorcontrib><description>Electron-beam (e-beam) lithography is commonly used in fabricating metal-oxide-silicon (MOS) quantum devices but creates defects at the Si/SiO2 interface. Here, we show that a forming gas anneal is effective at removing shallow defects (≤4 meV below the conduction band edge) created by an e-beam exposure by measuring the density of shallow electron traps in two sets of high-mobility MOS field-effect transistors. One set was irradiated with an electron-beam (10 keV, 40 μC/cm2) and was subsequently annealed in forming gas while the other set remained unexposed. Low temperature (335 mK) transport measurements indicate that the forming gas anneal recovers the e-beam exposed sample's peak mobility (14 000 cm2/Vs) to within a factor of two of the unexposed sample's mobility (23 000 cm2/Vs). Using electron spin resonance (ESR) to measure the density of shallow traps, we find that the two sets of devices are nearly identical, indicating the forming gas anneal is sufficient to anneal out shallow defects generated by the e-beam exposure. Fitting the two sets of devices' transport data to a percolation transition model, we extract a T = 0 percolation threshold density in quantitative agreement with our lowest temperature ESR-measured trap densities.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.4979035</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Conduction bands ; Defect annealing ; Defects ; Density ; Electron beam lithography ; Electron paramagnetic resonance ; Electron spin ; Electron traps ; Electronic devices ; Exposure ; Field effect transistors ; Metal oxides ; Percolation ; Semiconductor devices ; Silicon dioxide ; Silicon transistors ; Spin resonance ; Transistors ; Transport</subject><ispartof>Applied physics letters, 2017-03, Vol.110 (12)</ispartof><rights>Author(s)</rights><rights>2017 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-a54451941c35ac98401580cbd34066ecde378a5ac7ba628002d662021b8531a63</citedby><cites>FETCH-LOGICAL-c292t-a54451941c35ac98401580cbd34066ecde378a5ac7ba628002d662021b8531a63</cites><orcidid>0000-0003-2892-8022</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/1.4979035$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids></links><search><creatorcontrib>Kim, J.-S.</creatorcontrib><creatorcontrib>Tyryshkin, A. M.</creatorcontrib><creatorcontrib>Lyon, S. A.</creatorcontrib><title>Annealing shallow Si/SiO2 interface traps in electron-beam irradiated high-mobility metal-oxide-silicon transistors</title><title>Applied physics letters</title><description>Electron-beam (e-beam) lithography is commonly used in fabricating metal-oxide-silicon (MOS) quantum devices but creates defects at the Si/SiO2 interface. Here, we show that a forming gas anneal is effective at removing shallow defects (≤4 meV below the conduction band edge) created by an e-beam exposure by measuring the density of shallow electron traps in two sets of high-mobility MOS field-effect transistors. One set was irradiated with an electron-beam (10 keV, 40 μC/cm2) and was subsequently annealed in forming gas while the other set remained unexposed. Low temperature (335 mK) transport measurements indicate that the forming gas anneal recovers the e-beam exposed sample's peak mobility (14 000 cm2/Vs) to within a factor of two of the unexposed sample's mobility (23 000 cm2/Vs). Using electron spin resonance (ESR) to measure the density of shallow traps, we find that the two sets of devices are nearly identical, indicating the forming gas anneal is sufficient to anneal out shallow defects generated by the e-beam exposure. Fitting the two sets of devices' transport data to a percolation transition model, we extract a T = 0 percolation threshold density in quantitative agreement with our lowest temperature ESR-measured trap densities.</description><subject>Applied physics</subject><subject>Conduction bands</subject><subject>Defect annealing</subject><subject>Defects</subject><subject>Density</subject><subject>Electron beam lithography</subject><subject>Electron paramagnetic resonance</subject><subject>Electron spin</subject><subject>Electron traps</subject><subject>Electronic devices</subject><subject>Exposure</subject><subject>Field effect transistors</subject><subject>Metal oxides</subject><subject>Percolation</subject><subject>Semiconductor devices</subject><subject>Silicon dioxide</subject><subject>Silicon transistors</subject><subject>Spin resonance</subject><subject>Transistors</subject><subject>Transport</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqdkEtLAzEUhYMoWKsL_8GAK4XYPCaZmWUpvqDQRXUd7mQybcpMUpNU7b93SgvuXR3OuR_nwkHolpJHSiSf0Me8KirCxRkaUVIUmFNanqMRIYRjWQl6ia5i3AxWMM5HKE6dM9BZt8riGrrOf2dLO1naBcusSya0oE2WAmzj4DPTGZ2Cd7g20Gc2BGgsJNNka7ta497XtrNpn_UmQYf9j20MjkOkvTt0uGhj8iFeo4sWumhuTjpGH89P77NXPF-8vM2mc6xZxRIGkeeCVjnVXICuypxQURJdNzwnUhrdGF6UMJyKGiQrCWGNlIwwWpeCU5B8jO6OvdvgP3cmJrXxu-CGl4pRlgvOSFUO1P2R0sHHGEyrtsH2EPaKEnXYVFF12nRgH45s1DZBst79D_7y4Q9U26blv0lyhWQ</recordid><startdate>20170320</startdate><enddate>20170320</enddate><creator>Kim, J.-S.</creator><creator>Tyryshkin, A. M.</creator><creator>Lyon, S. A.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2892-8022</orcidid></search><sort><creationdate>20170320</creationdate><title>Annealing shallow Si/SiO2 interface traps in electron-beam irradiated high-mobility metal-oxide-silicon transistors</title><author>Kim, J.-S. ; Tyryshkin, A. M. ; Lyon, S. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-a54451941c35ac98401580cbd34066ecde378a5ac7ba628002d662021b8531a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Applied physics</topic><topic>Conduction bands</topic><topic>Defect annealing</topic><topic>Defects</topic><topic>Density</topic><topic>Electron beam lithography</topic><topic>Electron paramagnetic resonance</topic><topic>Electron spin</topic><topic>Electron traps</topic><topic>Electronic devices</topic><topic>Exposure</topic><topic>Field effect transistors</topic><topic>Metal oxides</topic><topic>Percolation</topic><topic>Semiconductor devices</topic><topic>Silicon dioxide</topic><topic>Silicon transistors</topic><topic>Spin resonance</topic><topic>Transistors</topic><topic>Transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, J.-S.</creatorcontrib><creatorcontrib>Tyryshkin, A. M.</creatorcontrib><creatorcontrib>Lyon, S. A.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, J.-S.</au><au>Tyryshkin, A. M.</au><au>Lyon, S. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Annealing shallow Si/SiO2 interface traps in electron-beam irradiated high-mobility metal-oxide-silicon transistors</atitle><jtitle>Applied physics letters</jtitle><date>2017-03-20</date><risdate>2017</risdate><volume>110</volume><issue>12</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Electron-beam (e-beam) lithography is commonly used in fabricating metal-oxide-silicon (MOS) quantum devices but creates defects at the Si/SiO2 interface. Here, we show that a forming gas anneal is effective at removing shallow defects (≤4 meV below the conduction band edge) created by an e-beam exposure by measuring the density of shallow electron traps in two sets of high-mobility MOS field-effect transistors. One set was irradiated with an electron-beam (10 keV, 40 μC/cm2) and was subsequently annealed in forming gas while the other set remained unexposed. Low temperature (335 mK) transport measurements indicate that the forming gas anneal recovers the e-beam exposed sample's peak mobility (14 000 cm2/Vs) to within a factor of two of the unexposed sample's mobility (23 000 cm2/Vs). Using electron spin resonance (ESR) to measure the density of shallow traps, we find that the two sets of devices are nearly identical, indicating the forming gas anneal is sufficient to anneal out shallow defects generated by the e-beam exposure. Fitting the two sets of devices' transport data to a percolation transition model, we extract a T = 0 percolation threshold density in quantitative agreement with our lowest temperature ESR-measured trap densities.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4979035</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0003-2892-8022</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2017-03, Vol.110 (12)
issn 0003-6951
1077-3118
language eng
recordid cdi_scitation_primary_10_1063_1_4979035
source AIP Journals Complete; Alma/SFX Local Collection
subjects Applied physics
Conduction bands
Defect annealing
Defects
Density
Electron beam lithography
Electron paramagnetic resonance
Electron spin
Electron traps
Electronic devices
Exposure
Field effect transistors
Metal oxides
Percolation
Semiconductor devices
Silicon dioxide
Silicon transistors
Spin resonance
Transistors
Transport
title Annealing shallow Si/SiO2 interface traps in electron-beam irradiated high-mobility metal-oxide-silicon transistors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T04%3A23%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Annealing%20shallow%20Si/SiO2%20interface%20traps%20in%20electron-beam%20irradiated%20high-mobility%20metal-oxide-silicon%20transistors&rft.jtitle=Applied%20physics%20letters&rft.au=Kim,%20J.-S.&rft.date=2017-03-20&rft.volume=110&rft.issue=12&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/1.4979035&rft_dat=%3Cproquest_scita%3E2124532098%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2124532098&rft_id=info:pmid/&rfr_iscdi=true