Rate dependence of grain boundary sliding via time-scaling atomistic simulations

Approaching experimentally relevant strain rates has been a long-standing challenge for molecular dynamics method which captures phenomena typically on the scale of nanoseconds or at strain rates of 107 s−1 and higher. Here, we use grain boundary sliding in nanostructures as a paradigmatic problem t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2017-02, Vol.121 (8)
Hauptverfasser: Hammami, Farah, Kulkarni, Yashashree
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page
container_title Journal of applied physics
container_volume 121
creator Hammami, Farah
Kulkarni, Yashashree
description Approaching experimentally relevant strain rates has been a long-standing challenge for molecular dynamics method which captures phenomena typically on the scale of nanoseconds or at strain rates of 107 s−1 and higher. Here, we use grain boundary sliding in nanostructures as a paradigmatic problem to investigate rate dependence using atomistic simulations. We employ a combination of time-scaling computational approaches, including the autonomous basin climbing method, the nudged elastic band method, and kinetic Monte Carlo, to access strain rates ranging from 0.5 s−1 to 107 s−1. Combined with a standard linear solid model for viscoelastic behavior, our simulations reveal that grain boundary sliding exhibits noticeable rate dependence only below strain rates on the order of 10 s−1 but is rate independent and consistent with molecular dynamics at higher strain rates.
doi_str_mv 10.1063/1.4977105
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_4977105</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2124540921</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-7a97c664b0d34f979e658c865614a6693bcfae9fc6c142ac08e96799c524d15b3</originalsourceid><addsrcrecordid>eNqd0N9LwzAQB_AgCs7pg_9BwCeFzlybH82jDKfCQBF9Dmmajoy2qUk68L-3cwPffTo4Ptzd9xC6BrIAwot7WFApBBB2gmZASpkJxsgpmhGSQ1ZKIc_RRYxbQgDKQs7Q27tOFtd2sH1te2Oxb_AmaNfjyo99rcM3jq2rXb_BO6dxcp3NotHtvqGT71xMzuDourHVyfk-XqKzRrfRXh3rHH2uHj-Wz9n69ell-bDOTJGLlAktheGcVqQuaDPdZTkrTckZB6o5l0VlGm1lY7gBmmtDSiu5kNKwnNbAqmKObg5zh-C_RhuT2vox9NNKlUNOGSUyh0ndHpQJPsZgGzUE102pFBC1f5gCdXzYZO8ONhqXfsP8D-98-INqqJviB6kheTk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2124540921</pqid></control><display><type>article</type><title>Rate dependence of grain boundary sliding via time-scaling atomistic simulations</title><source>American Institute of Physics (AIP) Journals</source><source>Alma/SFX Local Collection</source><creator>Hammami, Farah ; Kulkarni, Yashashree</creator><creatorcontrib>Hammami, Farah ; Kulkarni, Yashashree</creatorcontrib><description>Approaching experimentally relevant strain rates has been a long-standing challenge for molecular dynamics method which captures phenomena typically on the scale of nanoseconds or at strain rates of 107 s−1 and higher. Here, we use grain boundary sliding in nanostructures as a paradigmatic problem to investigate rate dependence using atomistic simulations. We employ a combination of time-scaling computational approaches, including the autonomous basin climbing method, the nudged elastic band method, and kinetic Monte Carlo, to access strain rates ranging from 0.5 s−1 to 107 s−1. Combined with a standard linear solid model for viscoelastic behavior, our simulations reveal that grain boundary sliding exhibits noticeable rate dependence only below strain rates on the order of 10 s−1 but is rate independent and consistent with molecular dynamics at higher strain rates.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.4977105</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Computer simulation ; Dependence ; Grain boundaries ; Grain boundary sliding ; Molecular dynamics ; Scaling ; Strain ; Stress-strain curves ; Viscoelasticity</subject><ispartof>Journal of applied physics, 2017-02, Vol.121 (8)</ispartof><rights>Author(s)</rights><rights>2017 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-7a97c664b0d34f979e658c865614a6693bcfae9fc6c142ac08e96799c524d15b3</citedby><cites>FETCH-LOGICAL-c327t-7a97c664b0d34f979e658c865614a6693bcfae9fc6c142ac08e96799c524d15b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/1.4977105$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76127</link.rule.ids></links><search><creatorcontrib>Hammami, Farah</creatorcontrib><creatorcontrib>Kulkarni, Yashashree</creatorcontrib><title>Rate dependence of grain boundary sliding via time-scaling atomistic simulations</title><title>Journal of applied physics</title><description>Approaching experimentally relevant strain rates has been a long-standing challenge for molecular dynamics method which captures phenomena typically on the scale of nanoseconds or at strain rates of 107 s−1 and higher. Here, we use grain boundary sliding in nanostructures as a paradigmatic problem to investigate rate dependence using atomistic simulations. We employ a combination of time-scaling computational approaches, including the autonomous basin climbing method, the nudged elastic band method, and kinetic Monte Carlo, to access strain rates ranging from 0.5 s−1 to 107 s−1. Combined with a standard linear solid model for viscoelastic behavior, our simulations reveal that grain boundary sliding exhibits noticeable rate dependence only below strain rates on the order of 10 s−1 but is rate independent and consistent with molecular dynamics at higher strain rates.</description><subject>Applied physics</subject><subject>Computer simulation</subject><subject>Dependence</subject><subject>Grain boundaries</subject><subject>Grain boundary sliding</subject><subject>Molecular dynamics</subject><subject>Scaling</subject><subject>Strain</subject><subject>Stress-strain curves</subject><subject>Viscoelasticity</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqd0N9LwzAQB_AgCs7pg_9BwCeFzlybH82jDKfCQBF9Dmmajoy2qUk68L-3cwPffTo4Ptzd9xC6BrIAwot7WFApBBB2gmZASpkJxsgpmhGSQ1ZKIc_RRYxbQgDKQs7Q27tOFtd2sH1te2Oxb_AmaNfjyo99rcM3jq2rXb_BO6dxcp3NotHtvqGT71xMzuDourHVyfk-XqKzRrfRXh3rHH2uHj-Wz9n69ell-bDOTJGLlAktheGcVqQuaDPdZTkrTckZB6o5l0VlGm1lY7gBmmtDSiu5kNKwnNbAqmKObg5zh-C_RhuT2vox9NNKlUNOGSUyh0ndHpQJPsZgGzUE102pFBC1f5gCdXzYZO8ONhqXfsP8D-98-INqqJviB6kheTk</recordid><startdate>20170228</startdate><enddate>20170228</enddate><creator>Hammami, Farah</creator><creator>Kulkarni, Yashashree</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20170228</creationdate><title>Rate dependence of grain boundary sliding via time-scaling atomistic simulations</title><author>Hammami, Farah ; Kulkarni, Yashashree</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-7a97c664b0d34f979e658c865614a6693bcfae9fc6c142ac08e96799c524d15b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Applied physics</topic><topic>Computer simulation</topic><topic>Dependence</topic><topic>Grain boundaries</topic><topic>Grain boundary sliding</topic><topic>Molecular dynamics</topic><topic>Scaling</topic><topic>Strain</topic><topic>Stress-strain curves</topic><topic>Viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hammami, Farah</creatorcontrib><creatorcontrib>Kulkarni, Yashashree</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hammami, Farah</au><au>Kulkarni, Yashashree</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rate dependence of grain boundary sliding via time-scaling atomistic simulations</atitle><jtitle>Journal of applied physics</jtitle><date>2017-02-28</date><risdate>2017</risdate><volume>121</volume><issue>8</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>Approaching experimentally relevant strain rates has been a long-standing challenge for molecular dynamics method which captures phenomena typically on the scale of nanoseconds or at strain rates of 107 s−1 and higher. Here, we use grain boundary sliding in nanostructures as a paradigmatic problem to investigate rate dependence using atomistic simulations. We employ a combination of time-scaling computational approaches, including the autonomous basin climbing method, the nudged elastic band method, and kinetic Monte Carlo, to access strain rates ranging from 0.5 s−1 to 107 s−1. Combined with a standard linear solid model for viscoelastic behavior, our simulations reveal that grain boundary sliding exhibits noticeable rate dependence only below strain rates on the order of 10 s−1 but is rate independent and consistent with molecular dynamics at higher strain rates.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4977105</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2017-02, Vol.121 (8)
issn 0021-8979
1089-7550
language eng
recordid cdi_scitation_primary_10_1063_1_4977105
source American Institute of Physics (AIP) Journals; Alma/SFX Local Collection
subjects Applied physics
Computer simulation
Dependence
Grain boundaries
Grain boundary sliding
Molecular dynamics
Scaling
Strain
Stress-strain curves
Viscoelasticity
title Rate dependence of grain boundary sliding via time-scaling atomistic simulations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T11%3A14%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rate%20dependence%20of%20grain%20boundary%20sliding%20via%20time-scaling%20atomistic%20simulations&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Hammami,%20Farah&rft.date=2017-02-28&rft.volume=121&rft.issue=8&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/1.4977105&rft_dat=%3Cproquest_scita%3E2124540921%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2124540921&rft_id=info:pmid/&rfr_iscdi=true