K-shell spectroscopy in hot plasmas: Stark effect, Breit interaction and QED corrections

The broadening of lines by Stark effect is widely used for inferring electron density and temperature in plasmas. Stark-effect calculations often rely on atomic data (transition rates, energy levels,…) not always exhaustive and/or valid only for isolated atoms. In this work, we first present a recen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Pain, J.-C., Gilleron, F., Comet, M., Gilles, D.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 1811
creator Pain, J.-C.
Gilleron, F.
Comet, M.
Gilles, D.
description The broadening of lines by Stark effect is widely used for inferring electron density and temperature in plasmas. Stark-effect calculations often rely on atomic data (transition rates, energy levels,…) not always exhaustive and/or valid only for isolated atoms. In this work, we first present a recent development in the detailed opacity code SCO-RCG for K-shell spectroscopy. The approach is adapted from the work of Gilles and Peyrusse. Neglecting non-diagonal terms in dipolar and collision operators, the line profile is expressed as a sum of Voigt functions associated to the Stark components. The formalism relies on the use of parabolic coordinates and the relativistic fine structure of Lyman lines is included by diagonalizing the Hamiltonian matrix associated to quantum states having the same principal quantum number n. The SCO-RCG code enables one to investigate plasma environment effects, the impact of the microfield distribution, the decoupling between electron and ion temperatures and the role of satellite lines (such as Li-like 1snℓn′ℓ′ – 1s 2 nℓ, Be-like, etc.). Atomic structure calculations have reached levels of accuracy which require evaluation of Breit interaction and many-electron quantum electro-dynamics (QED) contributions. Although much work was done for QED effects (self-energy and vacuum polarization) in hydrogenic atoms, the case of an arbitrary number of electrons is more complicated. Since exact analytic solutions do not exist, a number of heuristic methods have been used to approximate the screening of additional electrons in the self-energy part. We compare different ways of including such effects in atomic-structure codes (Slater-Condon, Multi-Configuration Dirac-Fock, etc.).
doi_str_mv 10.1063/1.4975720
format Conference Proceeding
fullrecord <record><control><sourceid>hal_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_4975720</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_01584592v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c299t-c4d25bcbf7c0c8b005b93d46f47bc5c4d78fdbaf815310603058255485ec64593</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWKsL3yBbxan5nSTutFYrFkRU6C5kMgkdnTZDEgp9e6e26M7VhXO_c7nnAHCO0Qijkl7jEVOCC4IOwABzjgtR4vIQDBBSrCCMzo_BSUqfCBElhByA-XORFq5tYeqczTEkG7oNbFZwETLsWpOWJt3At2ziF3Te98wVvIuuyT2TXTQ2N2EFzaqGr5N7aEOM7kdKp-DImza5s_0cgo-Hyft4WsxeHp_Gt7PCEqVyYVlNeGUrLyyyskKIV4rWrPRMVJb3WyF9XRkvMad9QEQRl4RzJrmzJeOKDsHF7u7CtLqLzdLEjQ6m0dPbmd5qCHPZg2SNe_ZyxybbZLN989exDlFjve9Od7X_D8ZIb8v-M9BvZxxwRQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>K-shell spectroscopy in hot plasmas: Stark effect, Breit interaction and QED corrections</title><source>AIP Journals Complete</source><creator>Pain, J.-C. ; Gilleron, F. ; Comet, M. ; Gilles, D.</creator><contributor>Benredjem, Djamel</contributor><creatorcontrib>Pain, J.-C. ; Gilleron, F. ; Comet, M. ; Gilles, D. ; Benredjem, Djamel</creatorcontrib><description>The broadening of lines by Stark effect is widely used for inferring electron density and temperature in plasmas. Stark-effect calculations often rely on atomic data (transition rates, energy levels,…) not always exhaustive and/or valid only for isolated atoms. In this work, we first present a recent development in the detailed opacity code SCO-RCG for K-shell spectroscopy. The approach is adapted from the work of Gilles and Peyrusse. Neglecting non-diagonal terms in dipolar and collision operators, the line profile is expressed as a sum of Voigt functions associated to the Stark components. The formalism relies on the use of parabolic coordinates and the relativistic fine structure of Lyman lines is included by diagonalizing the Hamiltonian matrix associated to quantum states having the same principal quantum number n. The SCO-RCG code enables one to investigate plasma environment effects, the impact of the microfield distribution, the decoupling between electron and ion temperatures and the role of satellite lines (such as Li-like 1snℓn′ℓ′ – 1s 2 nℓ, Be-like, etc.). Atomic structure calculations have reached levels of accuracy which require evaluation of Breit interaction and many-electron quantum electro-dynamics (QED) contributions. Although much work was done for QED effects (self-energy and vacuum polarization) in hydrogenic atoms, the case of an arbitrary number of electrons is more complicated. Since exact analytic solutions do not exist, a number of heuristic methods have been used to approximate the screening of additional electrons in the self-energy part. We compare different ways of including such effects in atomic-structure codes (Slater-Condon, Multi-Configuration Dirac-Fock, etc.).</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.4975720</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><subject>General Physics ; Physics</subject><ispartof>AIP Conf.Proc, 2017, Vol.1811 (1)</ispartof><rights>Author(s)</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c299t-c4d25bcbf7c0c8b005b93d46f47bc5c4d78fdbaf815310603058255485ec64593</citedby><orcidid>0000-0002-7825-1315</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/1.4975720$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,777,781,791,882,4498,27905,27906,76133</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01584592$$DView record in HAL$$Hfree_for_read</backlink></links><search><contributor>Benredjem, Djamel</contributor><creatorcontrib>Pain, J.-C.</creatorcontrib><creatorcontrib>Gilleron, F.</creatorcontrib><creatorcontrib>Comet, M.</creatorcontrib><creatorcontrib>Gilles, D.</creatorcontrib><title>K-shell spectroscopy in hot plasmas: Stark effect, Breit interaction and QED corrections</title><title>AIP Conf.Proc</title><description>The broadening of lines by Stark effect is widely used for inferring electron density and temperature in plasmas. Stark-effect calculations often rely on atomic data (transition rates, energy levels,…) not always exhaustive and/or valid only for isolated atoms. In this work, we first present a recent development in the detailed opacity code SCO-RCG for K-shell spectroscopy. The approach is adapted from the work of Gilles and Peyrusse. Neglecting non-diagonal terms in dipolar and collision operators, the line profile is expressed as a sum of Voigt functions associated to the Stark components. The formalism relies on the use of parabolic coordinates and the relativistic fine structure of Lyman lines is included by diagonalizing the Hamiltonian matrix associated to quantum states having the same principal quantum number n. The SCO-RCG code enables one to investigate plasma environment effects, the impact of the microfield distribution, the decoupling between electron and ion temperatures and the role of satellite lines (such as Li-like 1snℓn′ℓ′ – 1s 2 nℓ, Be-like, etc.). Atomic structure calculations have reached levels of accuracy which require evaluation of Breit interaction and many-electron quantum electro-dynamics (QED) contributions. Although much work was done for QED effects (self-energy and vacuum polarization) in hydrogenic atoms, the case of an arbitrary number of electrons is more complicated. Since exact analytic solutions do not exist, a number of heuristic methods have been used to approximate the screening of additional electrons in the self-energy part. We compare different ways of including such effects in atomic-structure codes (Slater-Condon, Multi-Configuration Dirac-Fock, etc.).</description><subject>General Physics</subject><subject>Physics</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2017</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kM1KAzEUhYMoWKsL3yBbxan5nSTutFYrFkRU6C5kMgkdnTZDEgp9e6e26M7VhXO_c7nnAHCO0Qijkl7jEVOCC4IOwABzjgtR4vIQDBBSrCCMzo_BSUqfCBElhByA-XORFq5tYeqczTEkG7oNbFZwETLsWpOWJt3At2ziF3Te98wVvIuuyT2TXTQ2N2EFzaqGr5N7aEOM7kdKp-DImza5s_0cgo-Hyft4WsxeHp_Gt7PCEqVyYVlNeGUrLyyyskKIV4rWrPRMVJb3WyF9XRkvMad9QEQRl4RzJrmzJeOKDsHF7u7CtLqLzdLEjQ6m0dPbmd5qCHPZg2SNe_ZyxybbZLN989exDlFjve9Od7X_D8ZIb8v-M9BvZxxwRQ</recordid><startdate>20170301</startdate><enddate>20170301</enddate><creator>Pain, J.-C.</creator><creator>Gilleron, F.</creator><creator>Comet, M.</creator><creator>Gilles, D.</creator><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-7825-1315</orcidid></search><sort><creationdate>20170301</creationdate><title>K-shell spectroscopy in hot plasmas: Stark effect, Breit interaction and QED corrections</title><author>Pain, J.-C. ; Gilleron, F. ; Comet, M. ; Gilles, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c299t-c4d25bcbf7c0c8b005b93d46f47bc5c4d78fdbaf815310603058255485ec64593</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2017</creationdate><topic>General Physics</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pain, J.-C.</creatorcontrib><creatorcontrib>Gilleron, F.</creatorcontrib><creatorcontrib>Comet, M.</creatorcontrib><creatorcontrib>Gilles, D.</creatorcontrib><collection>Hyper Article en Ligne (HAL)</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pain, J.-C.</au><au>Gilleron, F.</au><au>Comet, M.</au><au>Gilles, D.</au><au>Benredjem, Djamel</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>K-shell spectroscopy in hot plasmas: Stark effect, Breit interaction and QED corrections</atitle><btitle>AIP Conf.Proc</btitle><date>2017-03-01</date><risdate>2017</risdate><volume>1811</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>The broadening of lines by Stark effect is widely used for inferring electron density and temperature in plasmas. Stark-effect calculations often rely on atomic data (transition rates, energy levels,…) not always exhaustive and/or valid only for isolated atoms. In this work, we first present a recent development in the detailed opacity code SCO-RCG for K-shell spectroscopy. The approach is adapted from the work of Gilles and Peyrusse. Neglecting non-diagonal terms in dipolar and collision operators, the line profile is expressed as a sum of Voigt functions associated to the Stark components. The formalism relies on the use of parabolic coordinates and the relativistic fine structure of Lyman lines is included by diagonalizing the Hamiltonian matrix associated to quantum states having the same principal quantum number n. The SCO-RCG code enables one to investigate plasma environment effects, the impact of the microfield distribution, the decoupling between electron and ion temperatures and the role of satellite lines (such as Li-like 1snℓn′ℓ′ – 1s 2 nℓ, Be-like, etc.). Atomic structure calculations have reached levels of accuracy which require evaluation of Breit interaction and many-electron quantum electro-dynamics (QED) contributions. Although much work was done for QED effects (self-energy and vacuum polarization) in hydrogenic atoms, the case of an arbitrary number of electrons is more complicated. Since exact analytic solutions do not exist, a number of heuristic methods have been used to approximate the screening of additional electrons in the self-energy part. We compare different ways of including such effects in atomic-structure codes (Slater-Condon, Multi-Configuration Dirac-Fock, etc.).</abstract><doi>10.1063/1.4975720</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-7825-1315</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP Conf.Proc, 2017, Vol.1811 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_scitation_primary_10_1063_1_4975720
source AIP Journals Complete
subjects General Physics
Physics
title K-shell spectroscopy in hot plasmas: Stark effect, Breit interaction and QED corrections
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T03%3A41%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=K-shell%20spectroscopy%20in%20hot%20plasmas:%20Stark%20effect,%20Breit%20interaction%20and%20QED%20corrections&rft.btitle=AIP%20Conf.Proc&rft.au=Pain,%20J.-C.&rft.date=2017-03-01&rft.volume=1811&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/1.4975720&rft_dat=%3Chal_scita%3Eoai_HAL_hal_01584592v1%3C/hal_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true