Convergence of high order perturbative expansions in open system quantum dynamics

We propose a new method to directly calculate high order perturbative expansion terms in open system quantum dynamics. They are first written explicitly in path integral expressions. A set of differential equations are then derived by extending the hierarchical equation of motion (HEOM) approach. As...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2017-02, Vol.146 (6), p.064102-064102
Hauptverfasser: Xu, Meng, Song, Linze, Song, Kai, Shi, Qiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 064102
container_issue 6
container_start_page 064102
container_title The Journal of chemical physics
container_volume 146
creator Xu, Meng
Song, Linze
Song, Kai
Shi, Qiang
description We propose a new method to directly calculate high order perturbative expansion terms in open system quantum dynamics. They are first written explicitly in path integral expressions. A set of differential equations are then derived by extending the hierarchical equation of motion (HEOM) approach. As two typical examples for the bosonic and fermionic baths, specific forms of the extended HEOM are obtained for the spin-boson model and the Anderson impurity model. Numerical results are then presented for these two models. General trends of the high order perturbation terms as well as the necessary orders for the perturbative expansions to converge are analyzed.
doi_str_mv 10.1063/1.4974926
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_4974926</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2124550801</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-2926dc3aa7b10d8d1a9e106901007f50290263d2fb75f12a0a7dd08dd48c71073</originalsourceid><addsrcrecordid>eNp9kEtLxDAURoMoOo4u_AMScKNCx3vTR5KlDL5gQARdl7RJtTJNatIOzr83MqMLF67u5nD47iHkBGGGUKRXOMskzyQrdsgEQciEFxJ2yQSAYSILKA7IYQjvAICcZfvkgAkGKGQ-IU9zZ1fGvxpbG-oa-ta-vlHntfG0N34YfaWGdmWo-eyVDa2zgbaWut5YGtZhMB39GJUdxo7qtVVdW4cjsteoZTDH2zslL7c3z_P7ZPF49zC_XiR1mokhYXGurlOleIWghUYlTXxGAgLwJgcmgRWpZk3F8waZAsW1BqF1JmqOwNMpOd94e-8-RhOGsmtDbZZLZY0bQ4kiyiTkoojo2R_03Y3exnUlQ5blOQjASF1sqNq7ELxpyt63nfLrEqH87lxiue0c2dOtcaw6o3_Jn7ARuNwAoW6HmNDZf2xfFHmEAA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2124550801</pqid></control><display><type>article</type><title>Convergence of high order perturbative expansions in open system quantum dynamics</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Xu, Meng ; Song, Linze ; Song, Kai ; Shi, Qiang</creator><creatorcontrib>Xu, Meng ; Song, Linze ; Song, Kai ; Shi, Qiang</creatorcontrib><description>We propose a new method to directly calculate high order perturbative expansion terms in open system quantum dynamics. They are first written explicitly in path integral expressions. A set of differential equations are then derived by extending the hierarchical equation of motion (HEOM) approach. As two typical examples for the bosonic and fermionic baths, specific forms of the extended HEOM are obtained for the spin-boson model and the Anderson impurity model. Numerical results are then presented for these two models. General trends of the high order perturbation terms as well as the necessary orders for the perturbative expansions to converge are analyzed.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.4974926</identifier><identifier>PMID: 28201895</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Convergence ; Differential equations ; Equations of motion ; Mathematical models ; Open systems ; Physics ; Quantum theory</subject><ispartof>The Journal of chemical physics, 2017-02, Vol.146 (6), p.064102-064102</ispartof><rights>Author(s)</rights><rights>2017 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-2926dc3aa7b10d8d1a9e106901007f50290263d2fb75f12a0a7dd08dd48c71073</citedby><cites>FETCH-LOGICAL-c348t-2926dc3aa7b10d8d1a9e106901007f50290263d2fb75f12a0a7dd08dd48c71073</cites><orcidid>0000-0002-2440-0645 ; 0000000224400645</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/1.4974926$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28201895$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Meng</creatorcontrib><creatorcontrib>Song, Linze</creatorcontrib><creatorcontrib>Song, Kai</creatorcontrib><creatorcontrib>Shi, Qiang</creatorcontrib><title>Convergence of high order perturbative expansions in open system quantum dynamics</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>We propose a new method to directly calculate high order perturbative expansion terms in open system quantum dynamics. They are first written explicitly in path integral expressions. A set of differential equations are then derived by extending the hierarchical equation of motion (HEOM) approach. As two typical examples for the bosonic and fermionic baths, specific forms of the extended HEOM are obtained for the spin-boson model and the Anderson impurity model. Numerical results are then presented for these two models. General trends of the high order perturbation terms as well as the necessary orders for the perturbative expansions to converge are analyzed.</description><subject>Convergence</subject><subject>Differential equations</subject><subject>Equations of motion</subject><subject>Mathematical models</subject><subject>Open systems</subject><subject>Physics</subject><subject>Quantum theory</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAURoMoOo4u_AMScKNCx3vTR5KlDL5gQARdl7RJtTJNatIOzr83MqMLF67u5nD47iHkBGGGUKRXOMskzyQrdsgEQciEFxJ2yQSAYSILKA7IYQjvAICcZfvkgAkGKGQ-IU9zZ1fGvxpbG-oa-ta-vlHntfG0N34YfaWGdmWo-eyVDa2zgbaWut5YGtZhMB39GJUdxo7qtVVdW4cjsteoZTDH2zslL7c3z_P7ZPF49zC_XiR1mokhYXGurlOleIWghUYlTXxGAgLwJgcmgRWpZk3F8waZAsW1BqF1JmqOwNMpOd94e-8-RhOGsmtDbZZLZY0bQ4kiyiTkoojo2R_03Y3exnUlQ5blOQjASF1sqNq7ELxpyt63nfLrEqH87lxiue0c2dOtcaw6o3_Jn7ARuNwAoW6HmNDZf2xfFHmEAA</recordid><startdate>20170214</startdate><enddate>20170214</enddate><creator>Xu, Meng</creator><creator>Song, Linze</creator><creator>Song, Kai</creator><creator>Shi, Qiang</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2440-0645</orcidid><orcidid>https://orcid.org/0000000224400645</orcidid></search><sort><creationdate>20170214</creationdate><title>Convergence of high order perturbative expansions in open system quantum dynamics</title><author>Xu, Meng ; Song, Linze ; Song, Kai ; Shi, Qiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-2926dc3aa7b10d8d1a9e106901007f50290263d2fb75f12a0a7dd08dd48c71073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Convergence</topic><topic>Differential equations</topic><topic>Equations of motion</topic><topic>Mathematical models</topic><topic>Open systems</topic><topic>Physics</topic><topic>Quantum theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Meng</creatorcontrib><creatorcontrib>Song, Linze</creatorcontrib><creatorcontrib>Song, Kai</creatorcontrib><creatorcontrib>Shi, Qiang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Meng</au><au>Song, Linze</au><au>Song, Kai</au><au>Shi, Qiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convergence of high order perturbative expansions in open system quantum dynamics</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2017-02-14</date><risdate>2017</risdate><volume>146</volume><issue>6</issue><spage>064102</spage><epage>064102</epage><pages>064102-064102</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>We propose a new method to directly calculate high order perturbative expansion terms in open system quantum dynamics. They are first written explicitly in path integral expressions. A set of differential equations are then derived by extending the hierarchical equation of motion (HEOM) approach. As two typical examples for the bosonic and fermionic baths, specific forms of the extended HEOM are obtained for the spin-boson model and the Anderson impurity model. Numerical results are then presented for these two models. General trends of the high order perturbation terms as well as the necessary orders for the perturbative expansions to converge are analyzed.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>28201895</pmid><doi>10.1063/1.4974926</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-2440-0645</orcidid><orcidid>https://orcid.org/0000000224400645</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2017-02, Vol.146 (6), p.064102-064102
issn 0021-9606
1089-7690
language eng
recordid cdi_scitation_primary_10_1063_1_4974926
source AIP Journals Complete; Alma/SFX Local Collection
subjects Convergence
Differential equations
Equations of motion
Mathematical models
Open systems
Physics
Quantum theory
title Convergence of high order perturbative expansions in open system quantum dynamics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T13%3A58%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convergence%20of%20high%20order%20perturbative%20expansions%20in%20open%20system%20quantum%20dynamics&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Xu,%20Meng&rft.date=2017-02-14&rft.volume=146&rft.issue=6&rft.spage=064102&rft.epage=064102&rft.pages=064102-064102&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/1.4974926&rft_dat=%3Cproquest_scita%3E2124550801%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2124550801&rft_id=info:pmid/28201895&rfr_iscdi=true