Convergence of high order perturbative expansions in open system quantum dynamics
We propose a new method to directly calculate high order perturbative expansion terms in open system quantum dynamics. They are first written explicitly in path integral expressions. A set of differential equations are then derived by extending the hierarchical equation of motion (HEOM) approach. As...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2017-02, Vol.146 (6), p.064102-064102 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 064102 |
---|---|
container_issue | 6 |
container_start_page | 064102 |
container_title | The Journal of chemical physics |
container_volume | 146 |
creator | Xu, Meng Song, Linze Song, Kai Shi, Qiang |
description | We propose a new method to directly calculate high order perturbative expansion terms in open system quantum dynamics. They are first written explicitly in path integral expressions. A set of differential equations are then derived by extending the hierarchical equation of motion (HEOM) approach. As two typical examples for the bosonic and fermionic baths, specific forms of the extended HEOM are obtained for the spin-boson model and the Anderson impurity model. Numerical results are then presented for these two models. General trends of the high order perturbation terms as well as the necessary orders for the perturbative expansions to converge are analyzed. |
doi_str_mv | 10.1063/1.4974926 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_4974926</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2124550801</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-2926dc3aa7b10d8d1a9e106901007f50290263d2fb75f12a0a7dd08dd48c71073</originalsourceid><addsrcrecordid>eNp9kEtLxDAURoMoOo4u_AMScKNCx3vTR5KlDL5gQARdl7RJtTJNatIOzr83MqMLF67u5nD47iHkBGGGUKRXOMskzyQrdsgEQciEFxJ2yQSAYSILKA7IYQjvAICcZfvkgAkGKGQ-IU9zZ1fGvxpbG-oa-ta-vlHntfG0N34YfaWGdmWo-eyVDa2zgbaWut5YGtZhMB39GJUdxo7qtVVdW4cjsteoZTDH2zslL7c3z_P7ZPF49zC_XiR1mokhYXGurlOleIWghUYlTXxGAgLwJgcmgRWpZk3F8waZAsW1BqF1JmqOwNMpOd94e-8-RhOGsmtDbZZLZY0bQ4kiyiTkoojo2R_03Y3exnUlQ5blOQjASF1sqNq7ELxpyt63nfLrEqH87lxiue0c2dOtcaw6o3_Jn7ARuNwAoW6HmNDZf2xfFHmEAA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2124550801</pqid></control><display><type>article</type><title>Convergence of high order perturbative expansions in open system quantum dynamics</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Xu, Meng ; Song, Linze ; Song, Kai ; Shi, Qiang</creator><creatorcontrib>Xu, Meng ; Song, Linze ; Song, Kai ; Shi, Qiang</creatorcontrib><description>We propose a new method to directly calculate high order perturbative expansion terms in open system quantum dynamics. They are first written explicitly in path integral expressions. A set of differential equations are then derived by extending the hierarchical equation of motion (HEOM) approach. As two typical examples for the bosonic and fermionic baths, specific forms of the extended HEOM are obtained for the spin-boson model and the Anderson impurity model. Numerical results are then presented for these two models. General trends of the high order perturbation terms as well as the necessary orders for the perturbative expansions to converge are analyzed.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.4974926</identifier><identifier>PMID: 28201895</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Convergence ; Differential equations ; Equations of motion ; Mathematical models ; Open systems ; Physics ; Quantum theory</subject><ispartof>The Journal of chemical physics, 2017-02, Vol.146 (6), p.064102-064102</ispartof><rights>Author(s)</rights><rights>2017 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-2926dc3aa7b10d8d1a9e106901007f50290263d2fb75f12a0a7dd08dd48c71073</citedby><cites>FETCH-LOGICAL-c348t-2926dc3aa7b10d8d1a9e106901007f50290263d2fb75f12a0a7dd08dd48c71073</cites><orcidid>0000-0002-2440-0645 ; 0000000224400645</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/1.4974926$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28201895$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Meng</creatorcontrib><creatorcontrib>Song, Linze</creatorcontrib><creatorcontrib>Song, Kai</creatorcontrib><creatorcontrib>Shi, Qiang</creatorcontrib><title>Convergence of high order perturbative expansions in open system quantum dynamics</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>We propose a new method to directly calculate high order perturbative expansion terms in open system quantum dynamics. They are first written explicitly in path integral expressions. A set of differential equations are then derived by extending the hierarchical equation of motion (HEOM) approach. As two typical examples for the bosonic and fermionic baths, specific forms of the extended HEOM are obtained for the spin-boson model and the Anderson impurity model. Numerical results are then presented for these two models. General trends of the high order perturbation terms as well as the necessary orders for the perturbative expansions to converge are analyzed.</description><subject>Convergence</subject><subject>Differential equations</subject><subject>Equations of motion</subject><subject>Mathematical models</subject><subject>Open systems</subject><subject>Physics</subject><subject>Quantum theory</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAURoMoOo4u_AMScKNCx3vTR5KlDL5gQARdl7RJtTJNatIOzr83MqMLF67u5nD47iHkBGGGUKRXOMskzyQrdsgEQciEFxJ2yQSAYSILKA7IYQjvAICcZfvkgAkGKGQ-IU9zZ1fGvxpbG-oa-ta-vlHntfG0N34YfaWGdmWo-eyVDa2zgbaWut5YGtZhMB39GJUdxo7qtVVdW4cjsteoZTDH2zslL7c3z_P7ZPF49zC_XiR1mokhYXGurlOleIWghUYlTXxGAgLwJgcmgRWpZk3F8waZAsW1BqF1JmqOwNMpOd94e-8-RhOGsmtDbZZLZY0bQ4kiyiTkoojo2R_03Y3exnUlQ5blOQjASF1sqNq7ELxpyt63nfLrEqH87lxiue0c2dOtcaw6o3_Jn7ARuNwAoW6HmNDZf2xfFHmEAA</recordid><startdate>20170214</startdate><enddate>20170214</enddate><creator>Xu, Meng</creator><creator>Song, Linze</creator><creator>Song, Kai</creator><creator>Shi, Qiang</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2440-0645</orcidid><orcidid>https://orcid.org/0000000224400645</orcidid></search><sort><creationdate>20170214</creationdate><title>Convergence of high order perturbative expansions in open system quantum dynamics</title><author>Xu, Meng ; Song, Linze ; Song, Kai ; Shi, Qiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-2926dc3aa7b10d8d1a9e106901007f50290263d2fb75f12a0a7dd08dd48c71073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Convergence</topic><topic>Differential equations</topic><topic>Equations of motion</topic><topic>Mathematical models</topic><topic>Open systems</topic><topic>Physics</topic><topic>Quantum theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Meng</creatorcontrib><creatorcontrib>Song, Linze</creatorcontrib><creatorcontrib>Song, Kai</creatorcontrib><creatorcontrib>Shi, Qiang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Meng</au><au>Song, Linze</au><au>Song, Kai</au><au>Shi, Qiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convergence of high order perturbative expansions in open system quantum dynamics</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2017-02-14</date><risdate>2017</risdate><volume>146</volume><issue>6</issue><spage>064102</spage><epage>064102</epage><pages>064102-064102</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>We propose a new method to directly calculate high order perturbative expansion terms in open system quantum dynamics. They are first written explicitly in path integral expressions. A set of differential equations are then derived by extending the hierarchical equation of motion (HEOM) approach. As two typical examples for the bosonic and fermionic baths, specific forms of the extended HEOM are obtained for the spin-boson model and the Anderson impurity model. Numerical results are then presented for these two models. General trends of the high order perturbation terms as well as the necessary orders for the perturbative expansions to converge are analyzed.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>28201895</pmid><doi>10.1063/1.4974926</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-2440-0645</orcidid><orcidid>https://orcid.org/0000000224400645</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2017-02, Vol.146 (6), p.064102-064102 |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_scitation_primary_10_1063_1_4974926 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Convergence Differential equations Equations of motion Mathematical models Open systems Physics Quantum theory |
title | Convergence of high order perturbative expansions in open system quantum dynamics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T13%3A58%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convergence%20of%20high%20order%20perturbative%20expansions%20in%20open%20system%20quantum%20dynamics&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Xu,%20Meng&rft.date=2017-02-14&rft.volume=146&rft.issue=6&rft.spage=064102&rft.epage=064102&rft.pages=064102-064102&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/1.4974926&rft_dat=%3Cproquest_scita%3E2124550801%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2124550801&rft_id=info:pmid/28201895&rfr_iscdi=true |