In vivo mapping of current density distribution in brain tissues during deep brain stimulation (DBS)

New methods for in vivo mapping of brain responses during deep brain stimulation (DBS) are indispensable to secure clinical applications. Assessment of current density distribution, induced by internally injected currents, may provide an alternative method for understanding the therapeutic effects o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIP advances 2017-01, Vol.7 (1), p.015004-015004-6
Hauptverfasser: Sajib, Saurav Z. K., Oh, Tong In, Kim, Hyung Joong, Kwon, Oh In, Woo, Eung Je
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 015004-6
container_issue 1
container_start_page 015004
container_title AIP advances
container_volume 7
creator Sajib, Saurav Z. K.
Oh, Tong In
Kim, Hyung Joong
Kwon, Oh In
Woo, Eung Je
description New methods for in vivo mapping of brain responses during deep brain stimulation (DBS) are indispensable to secure clinical applications. Assessment of current density distribution, induced by internally injected currents, may provide an alternative method for understanding the therapeutic effects of electrical stimulation. The current flow and pathway are affected by internal conductivity, and can be imaged using magnetic resonance-based conductivity imaging methods. Magnetic resonance electrical impedance tomography (MREIT) is an imaging method that can enable highly resolved mapping of electromagnetic tissue properties such as current density and conductivity of living tissues. In the current study, we experimentally imaged current density distribution of in vivo canine brains by applying MREIT to electrical stimulation. The current density maps of three canine brains were calculated from the measured magnetic flux density data. The absolute current density values of brain tissues, including gray matter, white matter, and cerebrospinal fluid were compared to assess the active regions during DBS. The resulting current density in different tissue types may provide useful information about current pathways and volume activation for adjusting surgical planning and understanding the therapeutic effects of DBS.
doi_str_mv 10.1063/1.4973818
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_4973818</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_36d2fda65e5c4530838da019a5729e18</doaj_id><sourcerecordid>2124694050</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-736bba76cebfe96ae2935021da9c0c22c2852eba5eb1c0d11eaf90973e929fc63</originalsourceid><addsrcrecordid>eNp9kUtLAzEQxxdRUGoPfoOAFxWqeWzS5Kj1VRA8qOeQTWZLSrtZk2yh397tAxUE5zATJr_8ZyZTFGcEXxMs2A25LtWYSSIPihNKuBwxSsXhr_NxMUxpjnsrFcGyPCnctEErvwpoadrWNzMUamS7GKHJyEGTfF4j51OOvuqyDw3yDaqi6X32KXWQkOvi5p0DaPc3KftltzBb_OL-7u3ytDiqzSLBcB8Hxcfjw_vkefTy-jSd3L6MbEllHo2ZqCozFhaqGpQwQBXjmBJnlMWWUkslp1AZDhWx2BECpla4nxgUVbUVbFBMd7oumLluo1-auNbBeL1NhDjTJmZvF6CZcLR2RnDgtuQMSyadwUQZPqYKiOy1zndabQyf_ZxZz0MXm759TQkthSoxxz11uaNsDClFqL-rEqw3O9FE73fSs1c7Nlmft7_zDa9C_AF16-r_4L_KX4nvmgM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2124694050</pqid></control><display><type>article</type><title>In vivo mapping of current density distribution in brain tissues during deep brain stimulation (DBS)</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Sajib, Saurav Z. K. ; Oh, Tong In ; Kim, Hyung Joong ; Kwon, Oh In ; Woo, Eung Je</creator><creatorcontrib>Sajib, Saurav Z. K. ; Oh, Tong In ; Kim, Hyung Joong ; Kwon, Oh In ; Woo, Eung Je</creatorcontrib><description>New methods for in vivo mapping of brain responses during deep brain stimulation (DBS) are indispensable to secure clinical applications. Assessment of current density distribution, induced by internally injected currents, may provide an alternative method for understanding the therapeutic effects of electrical stimulation. The current flow and pathway are affected by internal conductivity, and can be imaged using magnetic resonance-based conductivity imaging methods. Magnetic resonance electrical impedance tomography (MREIT) is an imaging method that can enable highly resolved mapping of electromagnetic tissue properties such as current density and conductivity of living tissues. In the current study, we experimentally imaged current density distribution of in vivo canine brains by applying MREIT to electrical stimulation. The current density maps of three canine brains were calculated from the measured magnetic flux density data. The absolute current density values of brain tissues, including gray matter, white matter, and cerebrospinal fluid were compared to assess the active regions during DBS. The resulting current density in different tissue types may provide useful information about current pathways and volume activation for adjusting surgical planning and understanding the therapeutic effects of DBS.</description><identifier>ISSN: 2158-3226</identifier><identifier>EISSN: 2158-3226</identifier><identifier>DOI: 10.1063/1.4973818</identifier><identifier>CODEN: AAIDBI</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Brain ; Cerebrospinal fluid ; Current density ; Current distribution ; Density distribution ; Electrical impedance ; Electrical resistivity ; Flux density ; In vivo methods and tests ; Magnetic flux ; Magnetic resonance ; Magnetism ; Mapping ; Medical imaging ; Stimulation</subject><ispartof>AIP advances, 2017-01, Vol.7 (1), p.015004-015004-6</ispartof><rights>Author(s)</rights><rights>2017 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-736bba76cebfe96ae2935021da9c0c22c2852eba5eb1c0d11eaf90973e929fc63</citedby><cites>FETCH-LOGICAL-c428t-736bba76cebfe96ae2935021da9c0c22c2852eba5eb1c0d11eaf90973e929fc63</cites><orcidid>0000-0003-0110-9027</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,866,2106,27933,27934</link.rule.ids></links><search><creatorcontrib>Sajib, Saurav Z. K.</creatorcontrib><creatorcontrib>Oh, Tong In</creatorcontrib><creatorcontrib>Kim, Hyung Joong</creatorcontrib><creatorcontrib>Kwon, Oh In</creatorcontrib><creatorcontrib>Woo, Eung Je</creatorcontrib><title>In vivo mapping of current density distribution in brain tissues during deep brain stimulation (DBS)</title><title>AIP advances</title><description>New methods for in vivo mapping of brain responses during deep brain stimulation (DBS) are indispensable to secure clinical applications. Assessment of current density distribution, induced by internally injected currents, may provide an alternative method for understanding the therapeutic effects of electrical stimulation. The current flow and pathway are affected by internal conductivity, and can be imaged using magnetic resonance-based conductivity imaging methods. Magnetic resonance electrical impedance tomography (MREIT) is an imaging method that can enable highly resolved mapping of electromagnetic tissue properties such as current density and conductivity of living tissues. In the current study, we experimentally imaged current density distribution of in vivo canine brains by applying MREIT to electrical stimulation. The current density maps of three canine brains were calculated from the measured magnetic flux density data. The absolute current density values of brain tissues, including gray matter, white matter, and cerebrospinal fluid were compared to assess the active regions during DBS. The resulting current density in different tissue types may provide useful information about current pathways and volume activation for adjusting surgical planning and understanding the therapeutic effects of DBS.</description><subject>Brain</subject><subject>Cerebrospinal fluid</subject><subject>Current density</subject><subject>Current distribution</subject><subject>Density distribution</subject><subject>Electrical impedance</subject><subject>Electrical resistivity</subject><subject>Flux density</subject><subject>In vivo methods and tests</subject><subject>Magnetic flux</subject><subject>Magnetic resonance</subject><subject>Magnetism</subject><subject>Mapping</subject><subject>Medical imaging</subject><subject>Stimulation</subject><issn>2158-3226</issn><issn>2158-3226</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kUtLAzEQxxdRUGoPfoOAFxWqeWzS5Kj1VRA8qOeQTWZLSrtZk2yh397tAxUE5zATJr_8ZyZTFGcEXxMs2A25LtWYSSIPihNKuBwxSsXhr_NxMUxpjnsrFcGyPCnctEErvwpoadrWNzMUamS7GKHJyEGTfF4j51OOvuqyDw3yDaqi6X32KXWQkOvi5p0DaPc3KftltzBb_OL-7u3ytDiqzSLBcB8Hxcfjw_vkefTy-jSd3L6MbEllHo2ZqCozFhaqGpQwQBXjmBJnlMWWUkslp1AZDhWx2BECpla4nxgUVbUVbFBMd7oumLluo1-auNbBeL1NhDjTJmZvF6CZcLR2RnDgtuQMSyadwUQZPqYKiOy1zndabQyf_ZxZz0MXm759TQkthSoxxz11uaNsDClFqL-rEqw3O9FE73fSs1c7Nlmft7_zDa9C_AF16-r_4L_KX4nvmgM</recordid><startdate>201701</startdate><enddate>201701</enddate><creator>Sajib, Saurav Z. K.</creator><creator>Oh, Tong In</creator><creator>Kim, Hyung Joong</creator><creator>Kwon, Oh In</creator><creator>Woo, Eung Je</creator><general>American Institute of Physics</general><general>AIP Publishing LLC</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0110-9027</orcidid></search><sort><creationdate>201701</creationdate><title>In vivo mapping of current density distribution in brain tissues during deep brain stimulation (DBS)</title><author>Sajib, Saurav Z. K. ; Oh, Tong In ; Kim, Hyung Joong ; Kwon, Oh In ; Woo, Eung Je</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-736bba76cebfe96ae2935021da9c0c22c2852eba5eb1c0d11eaf90973e929fc63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Brain</topic><topic>Cerebrospinal fluid</topic><topic>Current density</topic><topic>Current distribution</topic><topic>Density distribution</topic><topic>Electrical impedance</topic><topic>Electrical resistivity</topic><topic>Flux density</topic><topic>In vivo methods and tests</topic><topic>Magnetic flux</topic><topic>Magnetic resonance</topic><topic>Magnetism</topic><topic>Mapping</topic><topic>Medical imaging</topic><topic>Stimulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sajib, Saurav Z. K.</creatorcontrib><creatorcontrib>Oh, Tong In</creatorcontrib><creatorcontrib>Kim, Hyung Joong</creatorcontrib><creatorcontrib>Kwon, Oh In</creatorcontrib><creatorcontrib>Woo, Eung Je</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>AIP advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sajib, Saurav Z. K.</au><au>Oh, Tong In</au><au>Kim, Hyung Joong</au><au>Kwon, Oh In</au><au>Woo, Eung Je</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In vivo mapping of current density distribution in brain tissues during deep brain stimulation (DBS)</atitle><jtitle>AIP advances</jtitle><date>2017-01</date><risdate>2017</risdate><volume>7</volume><issue>1</issue><spage>015004</spage><epage>015004-6</epage><pages>015004-015004-6</pages><issn>2158-3226</issn><eissn>2158-3226</eissn><coden>AAIDBI</coden><abstract>New methods for in vivo mapping of brain responses during deep brain stimulation (DBS) are indispensable to secure clinical applications. Assessment of current density distribution, induced by internally injected currents, may provide an alternative method for understanding the therapeutic effects of electrical stimulation. The current flow and pathway are affected by internal conductivity, and can be imaged using magnetic resonance-based conductivity imaging methods. Magnetic resonance electrical impedance tomography (MREIT) is an imaging method that can enable highly resolved mapping of electromagnetic tissue properties such as current density and conductivity of living tissues. In the current study, we experimentally imaged current density distribution of in vivo canine brains by applying MREIT to electrical stimulation. The current density maps of three canine brains were calculated from the measured magnetic flux density data. The absolute current density values of brain tissues, including gray matter, white matter, and cerebrospinal fluid were compared to assess the active regions during DBS. The resulting current density in different tissue types may provide useful information about current pathways and volume activation for adjusting surgical planning and understanding the therapeutic effects of DBS.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4973818</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-0110-9027</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2158-3226
ispartof AIP advances, 2017-01, Vol.7 (1), p.015004-015004-6
issn 2158-3226
2158-3226
language eng
recordid cdi_scitation_primary_10_1063_1_4973818
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Brain
Cerebrospinal fluid
Current density
Current distribution
Density distribution
Electrical impedance
Electrical resistivity
Flux density
In vivo methods and tests
Magnetic flux
Magnetic resonance
Magnetism
Mapping
Medical imaging
Stimulation
title In vivo mapping of current density distribution in brain tissues during deep brain stimulation (DBS)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T09%3A18%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20vivo%20mapping%20of%20current%20density%20distribution%20in%20brain%20tissues%20during%20deep%20brain%20stimulation%20(DBS)&rft.jtitle=AIP%20advances&rft.au=Sajib,%20Saurav%20Z.%20K.&rft.date=2017-01&rft.volume=7&rft.issue=1&rft.spage=015004&rft.epage=015004-6&rft.pages=015004-015004-6&rft.issn=2158-3226&rft.eissn=2158-3226&rft.coden=AAIDBI&rft_id=info:doi/10.1063/1.4973818&rft_dat=%3Cproquest_scita%3E2124694050%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2124694050&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_36d2fda65e5c4530838da019a5729e18&rfr_iscdi=true