In vivo mapping of current density distribution in brain tissues during deep brain stimulation (DBS)
New methods for in vivo mapping of brain responses during deep brain stimulation (DBS) are indispensable to secure clinical applications. Assessment of current density distribution, induced by internally injected currents, may provide an alternative method for understanding the therapeutic effects o...
Gespeichert in:
Veröffentlicht in: | AIP advances 2017-01, Vol.7 (1), p.015004-015004-6 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 015004-6 |
---|---|
container_issue | 1 |
container_start_page | 015004 |
container_title | AIP advances |
container_volume | 7 |
creator | Sajib, Saurav Z. K. Oh, Tong In Kim, Hyung Joong Kwon, Oh In Woo, Eung Je |
description | New methods for in vivo mapping of brain responses during deep brain stimulation (DBS) are indispensable to secure clinical applications. Assessment of current density distribution, induced by internally injected currents, may provide an alternative method for understanding the therapeutic effects of electrical stimulation. The current flow and pathway are affected by internal conductivity, and can be imaged using magnetic resonance-based conductivity imaging methods. Magnetic resonance electrical impedance tomography (MREIT) is an imaging method that can enable highly resolved mapping of electromagnetic tissue properties such as current density and conductivity of living tissues. In the current study, we experimentally imaged current density distribution of in vivo canine brains by applying MREIT to electrical stimulation. The current density maps of three canine brains were calculated from the measured magnetic flux density data. The absolute current density values of brain tissues, including gray matter, white matter, and cerebrospinal fluid were compared to assess the active regions during DBS. The resulting current density in different tissue types may provide useful information about current pathways and volume activation for adjusting surgical planning and understanding the therapeutic effects of DBS. |
doi_str_mv | 10.1063/1.4973818 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_4973818</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_36d2fda65e5c4530838da019a5729e18</doaj_id><sourcerecordid>2124694050</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-736bba76cebfe96ae2935021da9c0c22c2852eba5eb1c0d11eaf90973e929fc63</originalsourceid><addsrcrecordid>eNp9kUtLAzEQxxdRUGoPfoOAFxWqeWzS5Kj1VRA8qOeQTWZLSrtZk2yh397tAxUE5zATJr_8ZyZTFGcEXxMs2A25LtWYSSIPihNKuBwxSsXhr_NxMUxpjnsrFcGyPCnctEErvwpoadrWNzMUamS7GKHJyEGTfF4j51OOvuqyDw3yDaqi6X32KXWQkOvi5p0DaPc3KftltzBb_OL-7u3ytDiqzSLBcB8Hxcfjw_vkefTy-jSd3L6MbEllHo2ZqCozFhaqGpQwQBXjmBJnlMWWUkslp1AZDhWx2BECpla4nxgUVbUVbFBMd7oumLluo1-auNbBeL1NhDjTJmZvF6CZcLR2RnDgtuQMSyadwUQZPqYKiOy1zndabQyf_ZxZz0MXm759TQkthSoxxz11uaNsDClFqL-rEqw3O9FE73fSs1c7Nlmft7_zDa9C_AF16-r_4L_KX4nvmgM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2124694050</pqid></control><display><type>article</type><title>In vivo mapping of current density distribution in brain tissues during deep brain stimulation (DBS)</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Sajib, Saurav Z. K. ; Oh, Tong In ; Kim, Hyung Joong ; Kwon, Oh In ; Woo, Eung Je</creator><creatorcontrib>Sajib, Saurav Z. K. ; Oh, Tong In ; Kim, Hyung Joong ; Kwon, Oh In ; Woo, Eung Je</creatorcontrib><description>New methods for in vivo mapping of brain responses during deep brain stimulation (DBS) are indispensable to secure clinical applications. Assessment of current density distribution, induced by internally injected currents, may provide an alternative method for understanding the therapeutic effects of electrical stimulation. The current flow and pathway are affected by internal conductivity, and can be imaged using magnetic resonance-based conductivity imaging methods. Magnetic resonance electrical impedance tomography (MREIT) is an imaging method that can enable highly resolved mapping of electromagnetic tissue properties such as current density and conductivity of living tissues. In the current study, we experimentally imaged current density distribution of in vivo canine brains by applying MREIT to electrical stimulation. The current density maps of three canine brains were calculated from the measured magnetic flux density data. The absolute current density values of brain tissues, including gray matter, white matter, and cerebrospinal fluid were compared to assess the active regions during DBS. The resulting current density in different tissue types may provide useful information about current pathways and volume activation for adjusting surgical planning and understanding the therapeutic effects of DBS.</description><identifier>ISSN: 2158-3226</identifier><identifier>EISSN: 2158-3226</identifier><identifier>DOI: 10.1063/1.4973818</identifier><identifier>CODEN: AAIDBI</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Brain ; Cerebrospinal fluid ; Current density ; Current distribution ; Density distribution ; Electrical impedance ; Electrical resistivity ; Flux density ; In vivo methods and tests ; Magnetic flux ; Magnetic resonance ; Magnetism ; Mapping ; Medical imaging ; Stimulation</subject><ispartof>AIP advances, 2017-01, Vol.7 (1), p.015004-015004-6</ispartof><rights>Author(s)</rights><rights>2017 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-736bba76cebfe96ae2935021da9c0c22c2852eba5eb1c0d11eaf90973e929fc63</citedby><cites>FETCH-LOGICAL-c428t-736bba76cebfe96ae2935021da9c0c22c2852eba5eb1c0d11eaf90973e929fc63</cites><orcidid>0000-0003-0110-9027</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,866,2106,27933,27934</link.rule.ids></links><search><creatorcontrib>Sajib, Saurav Z. K.</creatorcontrib><creatorcontrib>Oh, Tong In</creatorcontrib><creatorcontrib>Kim, Hyung Joong</creatorcontrib><creatorcontrib>Kwon, Oh In</creatorcontrib><creatorcontrib>Woo, Eung Je</creatorcontrib><title>In vivo mapping of current density distribution in brain tissues during deep brain stimulation (DBS)</title><title>AIP advances</title><description>New methods for in vivo mapping of brain responses during deep brain stimulation (DBS) are indispensable to secure clinical applications. Assessment of current density distribution, induced by internally injected currents, may provide an alternative method for understanding the therapeutic effects of electrical stimulation. The current flow and pathway are affected by internal conductivity, and can be imaged using magnetic resonance-based conductivity imaging methods. Magnetic resonance electrical impedance tomography (MREIT) is an imaging method that can enable highly resolved mapping of electromagnetic tissue properties such as current density and conductivity of living tissues. In the current study, we experimentally imaged current density distribution of in vivo canine brains by applying MREIT to electrical stimulation. The current density maps of three canine brains were calculated from the measured magnetic flux density data. The absolute current density values of brain tissues, including gray matter, white matter, and cerebrospinal fluid were compared to assess the active regions during DBS. The resulting current density in different tissue types may provide useful information about current pathways and volume activation for adjusting surgical planning and understanding the therapeutic effects of DBS.</description><subject>Brain</subject><subject>Cerebrospinal fluid</subject><subject>Current density</subject><subject>Current distribution</subject><subject>Density distribution</subject><subject>Electrical impedance</subject><subject>Electrical resistivity</subject><subject>Flux density</subject><subject>In vivo methods and tests</subject><subject>Magnetic flux</subject><subject>Magnetic resonance</subject><subject>Magnetism</subject><subject>Mapping</subject><subject>Medical imaging</subject><subject>Stimulation</subject><issn>2158-3226</issn><issn>2158-3226</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kUtLAzEQxxdRUGoPfoOAFxWqeWzS5Kj1VRA8qOeQTWZLSrtZk2yh397tAxUE5zATJr_8ZyZTFGcEXxMs2A25LtWYSSIPihNKuBwxSsXhr_NxMUxpjnsrFcGyPCnctEErvwpoadrWNzMUamS7GKHJyEGTfF4j51OOvuqyDw3yDaqi6X32KXWQkOvi5p0DaPc3KftltzBb_OL-7u3ytDiqzSLBcB8Hxcfjw_vkefTy-jSd3L6MbEllHo2ZqCozFhaqGpQwQBXjmBJnlMWWUkslp1AZDhWx2BECpla4nxgUVbUVbFBMd7oumLluo1-auNbBeL1NhDjTJmZvF6CZcLR2RnDgtuQMSyadwUQZPqYKiOy1zndabQyf_ZxZz0MXm759TQkthSoxxz11uaNsDClFqL-rEqw3O9FE73fSs1c7Nlmft7_zDa9C_AF16-r_4L_KX4nvmgM</recordid><startdate>201701</startdate><enddate>201701</enddate><creator>Sajib, Saurav Z. K.</creator><creator>Oh, Tong In</creator><creator>Kim, Hyung Joong</creator><creator>Kwon, Oh In</creator><creator>Woo, Eung Je</creator><general>American Institute of Physics</general><general>AIP Publishing LLC</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0110-9027</orcidid></search><sort><creationdate>201701</creationdate><title>In vivo mapping of current density distribution in brain tissues during deep brain stimulation (DBS)</title><author>Sajib, Saurav Z. K. ; Oh, Tong In ; Kim, Hyung Joong ; Kwon, Oh In ; Woo, Eung Je</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-736bba76cebfe96ae2935021da9c0c22c2852eba5eb1c0d11eaf90973e929fc63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Brain</topic><topic>Cerebrospinal fluid</topic><topic>Current density</topic><topic>Current distribution</topic><topic>Density distribution</topic><topic>Electrical impedance</topic><topic>Electrical resistivity</topic><topic>Flux density</topic><topic>In vivo methods and tests</topic><topic>Magnetic flux</topic><topic>Magnetic resonance</topic><topic>Magnetism</topic><topic>Mapping</topic><topic>Medical imaging</topic><topic>Stimulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sajib, Saurav Z. K.</creatorcontrib><creatorcontrib>Oh, Tong In</creatorcontrib><creatorcontrib>Kim, Hyung Joong</creatorcontrib><creatorcontrib>Kwon, Oh In</creatorcontrib><creatorcontrib>Woo, Eung Je</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>AIP advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sajib, Saurav Z. K.</au><au>Oh, Tong In</au><au>Kim, Hyung Joong</au><au>Kwon, Oh In</au><au>Woo, Eung Je</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In vivo mapping of current density distribution in brain tissues during deep brain stimulation (DBS)</atitle><jtitle>AIP advances</jtitle><date>2017-01</date><risdate>2017</risdate><volume>7</volume><issue>1</issue><spage>015004</spage><epage>015004-6</epage><pages>015004-015004-6</pages><issn>2158-3226</issn><eissn>2158-3226</eissn><coden>AAIDBI</coden><abstract>New methods for in vivo mapping of brain responses during deep brain stimulation (DBS) are indispensable to secure clinical applications. Assessment of current density distribution, induced by internally injected currents, may provide an alternative method for understanding the therapeutic effects of electrical stimulation. The current flow and pathway are affected by internal conductivity, and can be imaged using magnetic resonance-based conductivity imaging methods. Magnetic resonance electrical impedance tomography (MREIT) is an imaging method that can enable highly resolved mapping of electromagnetic tissue properties such as current density and conductivity of living tissues. In the current study, we experimentally imaged current density distribution of in vivo canine brains by applying MREIT to electrical stimulation. The current density maps of three canine brains were calculated from the measured magnetic flux density data. The absolute current density values of brain tissues, including gray matter, white matter, and cerebrospinal fluid were compared to assess the active regions during DBS. The resulting current density in different tissue types may provide useful information about current pathways and volume activation for adjusting surgical planning and understanding the therapeutic effects of DBS.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4973818</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-0110-9027</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2158-3226 |
ispartof | AIP advances, 2017-01, Vol.7 (1), p.015004-015004-6 |
issn | 2158-3226 2158-3226 |
language | eng |
recordid | cdi_scitation_primary_10_1063_1_4973818 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Brain Cerebrospinal fluid Current density Current distribution Density distribution Electrical impedance Electrical resistivity Flux density In vivo methods and tests Magnetic flux Magnetic resonance Magnetism Mapping Medical imaging Stimulation |
title | In vivo mapping of current density distribution in brain tissues during deep brain stimulation (DBS) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T09%3A18%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20vivo%20mapping%20of%20current%20density%20distribution%20in%20brain%20tissues%20during%20deep%20brain%20stimulation%20(DBS)&rft.jtitle=AIP%20advances&rft.au=Sajib,%20Saurav%20Z.%20K.&rft.date=2017-01&rft.volume=7&rft.issue=1&rft.spage=015004&rft.epage=015004-6&rft.pages=015004-015004-6&rft.issn=2158-3226&rft.eissn=2158-3226&rft.coden=AAIDBI&rft_id=info:doi/10.1063/1.4973818&rft_dat=%3Cproquest_scita%3E2124694050%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2124694050&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_36d2fda65e5c4530838da019a5729e18&rfr_iscdi=true |