Tunable quasi-monochromatic near-field radiative heat transfer in s and p polarizations by a hyperbolic metamaterial layer

The spectra of thermal radiation have been controlled for thermophotovoltaics and mid-infrared light sources, and the spectral heat flux has been shown to exceed the blackbody limit by utilizing near-field coupling. We show that a hyperbolic metamaterial layer enables quasi-monochromatic near-field...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2017-01, Vol.121 (1)
Hauptverfasser: Ikeda, Taro, Ito, Kota, Iizuka, Hideo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Journal of applied physics
container_volume 121
creator Ikeda, Taro
Ito, Kota
Iizuka, Hideo
description The spectra of thermal radiation have been controlled for thermophotovoltaics and mid-infrared light sources, and the spectral heat flux has been shown to exceed the blackbody limit by utilizing near-field coupling. We show that a hyperbolic metamaterial layer enables quasi-monochromatic near-field radiative heat transfer between a metallic emitter and a dielectric receiver. The quasi-monochromatic transfer originates from the Fabry-Perot resonance in the hyperbolic layer, where evanescent waves in the vacuum gap become propagative. The Fabry-Perot resonance is excited in s and p polarizations, and the resonant condition is almost independent of the lateral wavenumber due to the large effective parallel permittivity of the hyperbolic metamaterial. The resonant frequency is tuned by the volume filling fraction and the thickness of the layer, while the frequency misalignment between polarizations is kept small. Furthermore, the resonant frequency is shown to be robust to the fluctuation of the gap width and the refractive index of the receiver dielectrics. The hyperbolic metamaterial layer is applied to near-field thermophotovoltaic energy generation, and both the power output and the efficiency are enhanced simultaneously. Numerical simulation reveals that the hyperbolic metamaterial layer can be realized by a hexagonal cylinder array.
doi_str_mv 10.1063/1.4973530
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_4973530</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2124695107</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-d14896a20290a4cdf46e937f7b015192a9c0c13e09b9b4d1012974d51aa7144f3</originalsourceid><addsrcrecordid>eNqd0E1Lw0AQBuBFFKzVg_9gwZNCdCa7yXaPUvyCgpd6DpNkQ7ck2XQ3KaS_3mgL3j0NDA_vMC9jtwiPCKl4wkeplUgEnLEZwkJHKkngnM0AYowWWulLdhXCFgBxIfSMHdZDS3lt-G6gYKPGta7YeNdQbwveGvJRZU1dck-lnXZ7wzeGet57akNlPLctD5zakne8czV5e5iUawPPR058M3bG566eshrT05RqvKWa1zQaf80uKqqDuTnNOft6fVkv36PV59vH8nkVFSJWfVSiXOiUYog1kCzKSqZGC1WpHDBBHZMuoEBhQOc6lyUCxlrJMkEihVJWYs7ujrmdd7vBhD7busG308ksxlimOkFQk7o_qsK7ELypss7bhvyYIWQ_1WaYnaqd7MPRhsL2v__-D--d_4NZV1biG0NBiFs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2124695107</pqid></control><display><type>article</type><title>Tunable quasi-monochromatic near-field radiative heat transfer in s and p polarizations by a hyperbolic metamaterial layer</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Ikeda, Taro ; Ito, Kota ; Iizuka, Hideo</creator><creatorcontrib>Ikeda, Taro ; Ito, Kota ; Iizuka, Hideo</creatorcontrib><description>The spectra of thermal radiation have been controlled for thermophotovoltaics and mid-infrared light sources, and the spectral heat flux has been shown to exceed the blackbody limit by utilizing near-field coupling. We show that a hyperbolic metamaterial layer enables quasi-monochromatic near-field radiative heat transfer between a metallic emitter and a dielectric receiver. The quasi-monochromatic transfer originates from the Fabry-Perot resonance in the hyperbolic layer, where evanescent waves in the vacuum gap become propagative. The Fabry-Perot resonance is excited in s and p polarizations, and the resonant condition is almost independent of the lateral wavenumber due to the large effective parallel permittivity of the hyperbolic metamaterial. The resonant frequency is tuned by the volume filling fraction and the thickness of the layer, while the frequency misalignment between polarizations is kept small. Furthermore, the resonant frequency is shown to be robust to the fluctuation of the gap width and the refractive index of the receiver dielectrics. The hyperbolic metamaterial layer is applied to near-field thermophotovoltaic energy generation, and both the power output and the efficiency are enhanced simultaneously. Numerical simulation reveals that the hyperbolic metamaterial layer can be realized by a hexagonal cylinder array.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.4973530</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Blackbody ; Computer simulation ; Cylinders ; Emitters ; Evanescent waves ; Heat flux ; Infrared radiation ; Light sources ; Metamaterials ; Misalignment ; Power efficiency ; Radiative heat transfer ; Refractivity ; Resonant frequencies ; Robustness (mathematics) ; Thermal radiation ; Thermophotovoltaics ; Thickness ; Variation ; Wavelengths</subject><ispartof>Journal of applied physics, 2017-01, Vol.121 (1)</ispartof><rights>Author(s)</rights><rights>2017 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-d14896a20290a4cdf46e937f7b015192a9c0c13e09b9b4d1012974d51aa7144f3</citedby><cites>FETCH-LOGICAL-c327t-d14896a20290a4cdf46e937f7b015192a9c0c13e09b9b4d1012974d51aa7144f3</cites><orcidid>0000-0002-7026-1033 ; 0000-0002-1526-5170</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/1.4973530$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76353</link.rule.ids></links><search><creatorcontrib>Ikeda, Taro</creatorcontrib><creatorcontrib>Ito, Kota</creatorcontrib><creatorcontrib>Iizuka, Hideo</creatorcontrib><title>Tunable quasi-monochromatic near-field radiative heat transfer in s and p polarizations by a hyperbolic metamaterial layer</title><title>Journal of applied physics</title><description>The spectra of thermal radiation have been controlled for thermophotovoltaics and mid-infrared light sources, and the spectral heat flux has been shown to exceed the blackbody limit by utilizing near-field coupling. We show that a hyperbolic metamaterial layer enables quasi-monochromatic near-field radiative heat transfer between a metallic emitter and a dielectric receiver. The quasi-monochromatic transfer originates from the Fabry-Perot resonance in the hyperbolic layer, where evanescent waves in the vacuum gap become propagative. The Fabry-Perot resonance is excited in s and p polarizations, and the resonant condition is almost independent of the lateral wavenumber due to the large effective parallel permittivity of the hyperbolic metamaterial. The resonant frequency is tuned by the volume filling fraction and the thickness of the layer, while the frequency misalignment between polarizations is kept small. Furthermore, the resonant frequency is shown to be robust to the fluctuation of the gap width and the refractive index of the receiver dielectrics. The hyperbolic metamaterial layer is applied to near-field thermophotovoltaic energy generation, and both the power output and the efficiency are enhanced simultaneously. Numerical simulation reveals that the hyperbolic metamaterial layer can be realized by a hexagonal cylinder array.</description><subject>Applied physics</subject><subject>Blackbody</subject><subject>Computer simulation</subject><subject>Cylinders</subject><subject>Emitters</subject><subject>Evanescent waves</subject><subject>Heat flux</subject><subject>Infrared radiation</subject><subject>Light sources</subject><subject>Metamaterials</subject><subject>Misalignment</subject><subject>Power efficiency</subject><subject>Radiative heat transfer</subject><subject>Refractivity</subject><subject>Resonant frequencies</subject><subject>Robustness (mathematics)</subject><subject>Thermal radiation</subject><subject>Thermophotovoltaics</subject><subject>Thickness</subject><subject>Variation</subject><subject>Wavelengths</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqd0E1Lw0AQBuBFFKzVg_9gwZNCdCa7yXaPUvyCgpd6DpNkQ7ck2XQ3KaS_3mgL3j0NDA_vMC9jtwiPCKl4wkeplUgEnLEZwkJHKkngnM0AYowWWulLdhXCFgBxIfSMHdZDS3lt-G6gYKPGta7YeNdQbwveGvJRZU1dck-lnXZ7wzeGet57akNlPLctD5zakne8czV5e5iUawPPR058M3bG566eshrT05RqvKWa1zQaf80uKqqDuTnNOft6fVkv36PV59vH8nkVFSJWfVSiXOiUYog1kCzKSqZGC1WpHDBBHZMuoEBhQOc6lyUCxlrJMkEihVJWYs7ujrmdd7vBhD7busG308ksxlimOkFQk7o_qsK7ELypss7bhvyYIWQ_1WaYnaqd7MPRhsL2v__-D--d_4NZV1biG0NBiFs</recordid><startdate>20170107</startdate><enddate>20170107</enddate><creator>Ikeda, Taro</creator><creator>Ito, Kota</creator><creator>Iizuka, Hideo</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7026-1033</orcidid><orcidid>https://orcid.org/0000-0002-1526-5170</orcidid></search><sort><creationdate>20170107</creationdate><title>Tunable quasi-monochromatic near-field radiative heat transfer in s and p polarizations by a hyperbolic metamaterial layer</title><author>Ikeda, Taro ; Ito, Kota ; Iizuka, Hideo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-d14896a20290a4cdf46e937f7b015192a9c0c13e09b9b4d1012974d51aa7144f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Applied physics</topic><topic>Blackbody</topic><topic>Computer simulation</topic><topic>Cylinders</topic><topic>Emitters</topic><topic>Evanescent waves</topic><topic>Heat flux</topic><topic>Infrared radiation</topic><topic>Light sources</topic><topic>Metamaterials</topic><topic>Misalignment</topic><topic>Power efficiency</topic><topic>Radiative heat transfer</topic><topic>Refractivity</topic><topic>Resonant frequencies</topic><topic>Robustness (mathematics)</topic><topic>Thermal radiation</topic><topic>Thermophotovoltaics</topic><topic>Thickness</topic><topic>Variation</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ikeda, Taro</creatorcontrib><creatorcontrib>Ito, Kota</creatorcontrib><creatorcontrib>Iizuka, Hideo</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ikeda, Taro</au><au>Ito, Kota</au><au>Iizuka, Hideo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tunable quasi-monochromatic near-field radiative heat transfer in s and p polarizations by a hyperbolic metamaterial layer</atitle><jtitle>Journal of applied physics</jtitle><date>2017-01-07</date><risdate>2017</risdate><volume>121</volume><issue>1</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>The spectra of thermal radiation have been controlled for thermophotovoltaics and mid-infrared light sources, and the spectral heat flux has been shown to exceed the blackbody limit by utilizing near-field coupling. We show that a hyperbolic metamaterial layer enables quasi-monochromatic near-field radiative heat transfer between a metallic emitter and a dielectric receiver. The quasi-monochromatic transfer originates from the Fabry-Perot resonance in the hyperbolic layer, where evanescent waves in the vacuum gap become propagative. The Fabry-Perot resonance is excited in s and p polarizations, and the resonant condition is almost independent of the lateral wavenumber due to the large effective parallel permittivity of the hyperbolic metamaterial. The resonant frequency is tuned by the volume filling fraction and the thickness of the layer, while the frequency misalignment between polarizations is kept small. Furthermore, the resonant frequency is shown to be robust to the fluctuation of the gap width and the refractive index of the receiver dielectrics. The hyperbolic metamaterial layer is applied to near-field thermophotovoltaic energy generation, and both the power output and the efficiency are enhanced simultaneously. Numerical simulation reveals that the hyperbolic metamaterial layer can be realized by a hexagonal cylinder array.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4973530</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-7026-1033</orcidid><orcidid>https://orcid.org/0000-0002-1526-5170</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2017-01, Vol.121 (1)
issn 0021-8979
1089-7550
language eng
recordid cdi_scitation_primary_10_1063_1_4973530
source AIP Journals Complete; Alma/SFX Local Collection
subjects Applied physics
Blackbody
Computer simulation
Cylinders
Emitters
Evanescent waves
Heat flux
Infrared radiation
Light sources
Metamaterials
Misalignment
Power efficiency
Radiative heat transfer
Refractivity
Resonant frequencies
Robustness (mathematics)
Thermal radiation
Thermophotovoltaics
Thickness
Variation
Wavelengths
title Tunable quasi-monochromatic near-field radiative heat transfer in s and p polarizations by a hyperbolic metamaterial layer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T10%3A13%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tunable%20quasi-monochromatic%20near-field%20radiative%20heat%20transfer%20in%20s%20and%20p%20polarizations%20by%20a%20hyperbolic%20metamaterial%20layer&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Ikeda,%20Taro&rft.date=2017-01-07&rft.volume=121&rft.issue=1&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/1.4973530&rft_dat=%3Cproquest_scita%3E2124695107%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2124695107&rft_id=info:pmid/&rfr_iscdi=true