Prediction of entropy stabilized incommensurate phases in the system M o S 2 − M o T e 2
A first principles phase diagram calculation, that included van der Waals interactions, was performed for the 3D bulk system ( 1 − X ) · M o S 2 − ( X ) · M o T e 2 . Surprisingly, the predicted phase diagram has at least two ordered phases, at X ≈ 0.46 , even though all calculated formation energie...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2016-10, Vol.120 (15) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 15 |
container_start_page | |
container_title | Journal of applied physics |
container_volume | 120 |
creator | Burton, B. P. Singh, A. K. |
description | A first principles phase diagram calculation, that included van der Waals interactions, was performed for the 3D bulk system
(
1
−
X
)
·
M
o
S
2
−
(
X
)
·
M
o
T
e
2
. Surprisingly, the predicted phase diagram has at least two ordered phases, at
X
≈
0.46
, even though all calculated formation energies are positive; in a ground-state analysis that examined all configurations with 16 or fewer anion sites. The lower-temperature I-phase is predicted to transform to a higher-temperature
I
′
-phase at
T
≈
500
K
, and
I
′
disorders at
T
≈
730
K
. Both these transitions are predicted to be first-order, and there are broad two-phase fields on both sides of the ordered regions. Both the I- and
I
′
-phases are predicted to be incommensurate, i.e., aperiodic: I-phase in three dimensions; and
I
′
-phase in two dimensions. |
doi_str_mv | 10.1063/1.4964868 |
format | Article |
fullrecord | <record><control><sourceid>scitation</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_4964868</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jap</sourcerecordid><originalsourceid>FETCH-LOGICAL-s140t-80e3c688b7072bc07ff0969512a41573e6580c8b46167ce82214dcca7b3e24723</originalsourceid><addsrcrecordid>eNp9UMlKBDEUDKLgOHrwD95Z6PFl6SR9lMENRhQcL16adPo1E5le6ERh_ALPfqJf4jbgzVMVRVVBFWPHHGcctTzlM1VoZbXdYROOtshMnuMumyAKntnCFPvsIMYnRM6tLCbs8W6kOvgU-g76BqhLYz9sICZXhXV4pRpC5_u2pS4-jy4RDCsXKX6pkFYEcRMTtXADPdyDgI-39x--BAJxyPYat450tMUpe7g4X86vssXt5fX8bJFFrjBlFkl6bW1l0IjKo2kaLHSRc-EUz40knVv0tlKaa-PJCsFV7b0zlSShjJBTdvLbG31I7ntJOYyhdeOmfOnHkpfbR8qhbv4zcyy_L_wLyE9hH2II</addsrcrecordid><sourcetype>Enrichment Source</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Prediction of entropy stabilized incommensurate phases in the system M o S 2 − M o T e 2</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Burton, B. P. ; Singh, A. K.</creator><creatorcontrib>Burton, B. P. ; Singh, A. K.</creatorcontrib><description>A first principles phase diagram calculation, that included van der Waals interactions, was performed for the 3D bulk system
(
1
−
X
)
·
M
o
S
2
−
(
X
)
·
M
o
T
e
2
. Surprisingly, the predicted phase diagram has at least two ordered phases, at
X
≈
0.46
, even though all calculated formation energies are positive; in a ground-state analysis that examined all configurations with 16 or fewer anion sites. The lower-temperature I-phase is predicted to transform to a higher-temperature
I
′
-phase at
T
≈
500
K
, and
I
′
disorders at
T
≈
730
K
. Both these transitions are predicted to be first-order, and there are broad two-phase fields on both sides of the ordered regions. Both the I- and
I
′
-phases are predicted to be incommensurate, i.e., aperiodic: I-phase in three dimensions; and
I
′
-phase in two dimensions.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.4964868</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><ispartof>Journal of applied physics, 2016-10, Vol.120 (15)</ispartof><rights>U.S. Government</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-7212-6310</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/1.4964868$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids></links><search><creatorcontrib>Burton, B. P.</creatorcontrib><creatorcontrib>Singh, A. K.</creatorcontrib><title>Prediction of entropy stabilized incommensurate phases in the system M o S 2 − M o T e 2</title><title>Journal of applied physics</title><description>A first principles phase diagram calculation, that included van der Waals interactions, was performed for the 3D bulk system
(
1
−
X
)
·
M
o
S
2
−
(
X
)
·
M
o
T
e
2
. Surprisingly, the predicted phase diagram has at least two ordered phases, at
X
≈
0.46
, even though all calculated formation energies are positive; in a ground-state analysis that examined all configurations with 16 or fewer anion sites. The lower-temperature I-phase is predicted to transform to a higher-temperature
I
′
-phase at
T
≈
500
K
, and
I
′
disorders at
T
≈
730
K
. Both these transitions are predicted to be first-order, and there are broad two-phase fields on both sides of the ordered regions. Both the I- and
I
′
-phases are predicted to be incommensurate, i.e., aperiodic: I-phase in three dimensions; and
I
′
-phase in two dimensions.</description><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNp9UMlKBDEUDKLgOHrwD95Z6PFl6SR9lMENRhQcL16adPo1E5le6ERh_ALPfqJf4jbgzVMVRVVBFWPHHGcctTzlM1VoZbXdYROOtshMnuMumyAKntnCFPvsIMYnRM6tLCbs8W6kOvgU-g76BqhLYz9sICZXhXV4pRpC5_u2pS4-jy4RDCsXKX6pkFYEcRMTtXADPdyDgI-39x--BAJxyPYat450tMUpe7g4X86vssXt5fX8bJFFrjBlFkl6bW1l0IjKo2kaLHSRc-EUz40knVv0tlKaa-PJCsFV7b0zlSShjJBTdvLbG31I7ntJOYyhdeOmfOnHkpfbR8qhbv4zcyy_L_wLyE9hH2II</recordid><startdate>20161021</startdate><enddate>20161021</enddate><creator>Burton, B. P.</creator><creator>Singh, A. K.</creator><scope/><orcidid>https://orcid.org/0000-0002-7212-6310</orcidid></search><sort><creationdate>20161021</creationdate><title>Prediction of entropy stabilized incommensurate phases in the system M o S 2 − M o T e 2</title><author>Burton, B. P. ; Singh, A. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-s140t-80e3c688b7072bc07ff0969512a41573e6580c8b46167ce82214dcca7b3e24723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Burton, B. P.</creatorcontrib><creatorcontrib>Singh, A. K.</creatorcontrib><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Burton, B. P.</au><au>Singh, A. K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of entropy stabilized incommensurate phases in the system M o S 2 − M o T e 2</atitle><jtitle>Journal of applied physics</jtitle><date>2016-10-21</date><risdate>2016</risdate><volume>120</volume><issue>15</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>A first principles phase diagram calculation, that included van der Waals interactions, was performed for the 3D bulk system
(
1
−
X
)
·
M
o
S
2
−
(
X
)
·
M
o
T
e
2
. Surprisingly, the predicted phase diagram has at least two ordered phases, at
X
≈
0.46
, even though all calculated formation energies are positive; in a ground-state analysis that examined all configurations with 16 or fewer anion sites. The lower-temperature I-phase is predicted to transform to a higher-temperature
I
′
-phase at
T
≈
500
K
, and
I
′
disorders at
T
≈
730
K
. Both these transitions are predicted to be first-order, and there are broad two-phase fields on both sides of the ordered regions. Both the I- and
I
′
-phases are predicted to be incommensurate, i.e., aperiodic: I-phase in three dimensions; and
I
′
-phase in two dimensions.</abstract><doi>10.1063/1.4964868</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-7212-6310</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 2016-10, Vol.120 (15) |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_scitation_primary_10_1063_1_4964868 |
source | AIP Journals Complete; Alma/SFX Local Collection |
title | Prediction of entropy stabilized incommensurate phases in the system M o S 2 − M o T e 2 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T13%3A26%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20entropy%20stabilized%20incommensurate%20phases%20in%20the%20system%20M%20o%20S%202%20%E2%88%92%20M%20o%20T%20e%202&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Burton,%20B.%20P.&rft.date=2016-10-21&rft.volume=120&rft.issue=15&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/1.4964868&rft_dat=%3Cscitation%3Ejap%3C/scitation%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |