Horizontal stability of a bouncing ball
We present an investigation of a partially elastic ball bouncing on a vertically vibrated concave parabolic surface in two dimensions. In particular, we demonstrate that simple vertical motion, wherein the ball bounces periodically at the parabola's vertex, is unstable to horizontal perturbatio...
Gespeichert in:
Veröffentlicht in: | Chaos (Woodbury, N.Y.) N.Y.), 2016-09, Vol.26 (9), p.093105-093105 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 093105 |
---|---|
container_issue | 9 |
container_start_page | 093105 |
container_title | Chaos (Woodbury, N.Y.) |
container_volume | 26 |
creator | McBennett, Brendan G. Harris, Daniel M. |
description | We present an investigation of a partially elastic ball bouncing on a vertically vibrated concave parabolic surface in two dimensions. In particular, we demonstrate that simple vertical motion, wherein the ball bounces periodically at the parabola's vertex, is unstable to horizontal perturbations when the parabolic coefficient defining the surface shape exceeds a critical value. The result is a new periodic solution where the ball bounces laterally over the vertex. As the parabola is further steepened, this new solution also becomes unstable which gives rise to other complex periodic and chaotic bouncing states, all characterized by persistent lateral motion. |
doi_str_mv | 10.1063/1.4962350 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_4962350</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1835681045</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-c6aecf07b31dc8af4ba0c3753a8cf55c26660135ea8b1fc10cf032c5b28227633</originalsourceid><addsrcrecordid>eNp90EtLAzEUBeAgiq2PhX9ABlz4gKm5eU26FFErFNzoOiRpIinTSU1mhPrrndKqIOjq3sXH4XAQOgE8AizoNYzYWBDK8Q4aApbjshKS7K5_zkrgGA_QQc5zjDH0ah8NSFVJYJUcovNJTOEjNq2ui9xqE-rQroroC12Y2DU2NK-F0XV9hPa8rrM73t5D9HJ_93w7KadPD4-3N9PSMjZuSyu0sx5XhsLMSu2Z0djSilMtrefcEiEEBsqdlga8BdxjSiw3RBJSCUoP0cUmd5niW-dyqxYhW1fXunGxywok5UICZrynZ7_oPHap6dspAgQ4r5jAvbrcKJtizsl5tUxhodNKAVbr9RSo7Xq9Pd0mdmbhZt_ya64eXG1AtqHVbYjNv2l_4veYfqBazjz9BAYfgxA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2121557460</pqid></control><display><type>article</type><title>Horizontal stability of a bouncing ball</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>McBennett, Brendan G. ; Harris, Daniel M.</creator><creatorcontrib>McBennett, Brendan G. ; Harris, Daniel M.</creatorcontrib><description>We present an investigation of a partially elastic ball bouncing on a vertically vibrated concave parabolic surface in two dimensions. In particular, we demonstrate that simple vertical motion, wherein the ball bounces periodically at the parabola's vertex, is unstable to horizontal perturbations when the parabolic coefficient defining the surface shape exceeds a critical value. The result is a new periodic solution where the ball bounces laterally over the vertex. As the parabola is further steepened, this new solution also becomes unstable which gives rise to other complex periodic and chaotic bouncing states, all characterized by persistent lateral motion.</description><identifier>ISSN: 1054-1500</identifier><identifier>EISSN: 1089-7682</identifier><identifier>DOI: 10.1063/1.4962350</identifier><identifier>PMID: 27781478</identifier><identifier>CODEN: CHAOEH</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Bouncing ; Vertical motion</subject><ispartof>Chaos (Woodbury, N.Y.), 2016-09, Vol.26 (9), p.093105-093105</ispartof><rights>Author(s)</rights><rights>2016 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-c6aecf07b31dc8af4ba0c3753a8cf55c26660135ea8b1fc10cf032c5b28227633</citedby><cites>FETCH-LOGICAL-c449t-c6aecf07b31dc8af4ba0c3753a8cf55c26660135ea8b1fc10cf032c5b28227633</cites><orcidid>0000-0003-2615-9178</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,790,4498,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27781478$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>McBennett, Brendan G.</creatorcontrib><creatorcontrib>Harris, Daniel M.</creatorcontrib><title>Horizontal stability of a bouncing ball</title><title>Chaos (Woodbury, N.Y.)</title><addtitle>Chaos</addtitle><description>We present an investigation of a partially elastic ball bouncing on a vertically vibrated concave parabolic surface in two dimensions. In particular, we demonstrate that simple vertical motion, wherein the ball bounces periodically at the parabola's vertex, is unstable to horizontal perturbations when the parabolic coefficient defining the surface shape exceeds a critical value. The result is a new periodic solution where the ball bounces laterally over the vertex. As the parabola is further steepened, this new solution also becomes unstable which gives rise to other complex periodic and chaotic bouncing states, all characterized by persistent lateral motion.</description><subject>Bouncing</subject><subject>Vertical motion</subject><issn>1054-1500</issn><issn>1089-7682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp90EtLAzEUBeAgiq2PhX9ABlz4gKm5eU26FFErFNzoOiRpIinTSU1mhPrrndKqIOjq3sXH4XAQOgE8AizoNYzYWBDK8Q4aApbjshKS7K5_zkrgGA_QQc5zjDH0ah8NSFVJYJUcovNJTOEjNq2ui9xqE-rQroroC12Y2DU2NK-F0XV9hPa8rrM73t5D9HJ_93w7KadPD4-3N9PSMjZuSyu0sx5XhsLMSu2Z0djSilMtrefcEiEEBsqdlga8BdxjSiw3RBJSCUoP0cUmd5niW-dyqxYhW1fXunGxywok5UICZrynZ7_oPHap6dspAgQ4r5jAvbrcKJtizsl5tUxhodNKAVbr9RSo7Xq9Pd0mdmbhZt_ya64eXG1AtqHVbYjNv2l_4veYfqBazjz9BAYfgxA</recordid><startdate>201609</startdate><enddate>201609</enddate><creator>McBennett, Brendan G.</creator><creator>Harris, Daniel M.</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2615-9178</orcidid></search><sort><creationdate>201609</creationdate><title>Horizontal stability of a bouncing ball</title><author>McBennett, Brendan G. ; Harris, Daniel M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-c6aecf07b31dc8af4ba0c3753a8cf55c26660135ea8b1fc10cf032c5b28227633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Bouncing</topic><topic>Vertical motion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McBennett, Brendan G.</creatorcontrib><creatorcontrib>Harris, Daniel M.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Chaos (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McBennett, Brendan G.</au><au>Harris, Daniel M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Horizontal stability of a bouncing ball</atitle><jtitle>Chaos (Woodbury, N.Y.)</jtitle><addtitle>Chaos</addtitle><date>2016-09</date><risdate>2016</risdate><volume>26</volume><issue>9</issue><spage>093105</spage><epage>093105</epage><pages>093105-093105</pages><issn>1054-1500</issn><eissn>1089-7682</eissn><coden>CHAOEH</coden><abstract>We present an investigation of a partially elastic ball bouncing on a vertically vibrated concave parabolic surface in two dimensions. In particular, we demonstrate that simple vertical motion, wherein the ball bounces periodically at the parabola's vertex, is unstable to horizontal perturbations when the parabolic coefficient defining the surface shape exceeds a critical value. The result is a new periodic solution where the ball bounces laterally over the vertex. As the parabola is further steepened, this new solution also becomes unstable which gives rise to other complex periodic and chaotic bouncing states, all characterized by persistent lateral motion.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>27781478</pmid><doi>10.1063/1.4962350</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-2615-9178</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1054-1500 |
ispartof | Chaos (Woodbury, N.Y.), 2016-09, Vol.26 (9), p.093105-093105 |
issn | 1054-1500 1089-7682 |
language | eng |
recordid | cdi_scitation_primary_10_1063_1_4962350 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Bouncing Vertical motion |
title | Horizontal stability of a bouncing ball |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T03%3A10%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Horizontal%20stability%20of%20a%20bouncing%20ball&rft.jtitle=Chaos%20(Woodbury,%20N.Y.)&rft.au=McBennett,%20Brendan%20G.&rft.date=2016-09&rft.volume=26&rft.issue=9&rft.spage=093105&rft.epage=093105&rft.pages=093105-093105&rft.issn=1054-1500&rft.eissn=1089-7682&rft.coden=CHAOEH&rft_id=info:doi/10.1063/1.4962350&rft_dat=%3Cproquest_scita%3E1835681045%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2121557460&rft_id=info:pmid/27781478&rfr_iscdi=true |