Horizontal stability of a bouncing ball

We present an investigation of a partially elastic ball bouncing on a vertically vibrated concave parabolic surface in two dimensions. In particular, we demonstrate that simple vertical motion, wherein the ball bounces periodically at the parabola's vertex, is unstable to horizontal perturbatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chaos (Woodbury, N.Y.) N.Y.), 2016-09, Vol.26 (9), p.093105-093105
Hauptverfasser: McBennett, Brendan G., Harris, Daniel M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 093105
container_issue 9
container_start_page 093105
container_title Chaos (Woodbury, N.Y.)
container_volume 26
creator McBennett, Brendan G.
Harris, Daniel M.
description We present an investigation of a partially elastic ball bouncing on a vertically vibrated concave parabolic surface in two dimensions. In particular, we demonstrate that simple vertical motion, wherein the ball bounces periodically at the parabola's vertex, is unstable to horizontal perturbations when the parabolic coefficient defining the surface shape exceeds a critical value. The result is a new periodic solution where the ball bounces laterally over the vertex. As the parabola is further steepened, this new solution also becomes unstable which gives rise to other complex periodic and chaotic bouncing states, all characterized by persistent lateral motion.
doi_str_mv 10.1063/1.4962350
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_4962350</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1835681045</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-c6aecf07b31dc8af4ba0c3753a8cf55c26660135ea8b1fc10cf032c5b28227633</originalsourceid><addsrcrecordid>eNp90EtLAzEUBeAgiq2PhX9ABlz4gKm5eU26FFErFNzoOiRpIinTSU1mhPrrndKqIOjq3sXH4XAQOgE8AizoNYzYWBDK8Q4aApbjshKS7K5_zkrgGA_QQc5zjDH0ah8NSFVJYJUcovNJTOEjNq2ui9xqE-rQroroC12Y2DU2NK-F0XV9hPa8rrM73t5D9HJ_93w7KadPD4-3N9PSMjZuSyu0sx5XhsLMSu2Z0djSilMtrefcEiEEBsqdlga8BdxjSiw3RBJSCUoP0cUmd5niW-dyqxYhW1fXunGxywok5UICZrynZ7_oPHap6dspAgQ4r5jAvbrcKJtizsl5tUxhodNKAVbr9RSo7Xq9Pd0mdmbhZt_ya64eXG1AtqHVbYjNv2l_4veYfqBazjz9BAYfgxA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2121557460</pqid></control><display><type>article</type><title>Horizontal stability of a bouncing ball</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>McBennett, Brendan G. ; Harris, Daniel M.</creator><creatorcontrib>McBennett, Brendan G. ; Harris, Daniel M.</creatorcontrib><description>We present an investigation of a partially elastic ball bouncing on a vertically vibrated concave parabolic surface in two dimensions. In particular, we demonstrate that simple vertical motion, wherein the ball bounces periodically at the parabola's vertex, is unstable to horizontal perturbations when the parabolic coefficient defining the surface shape exceeds a critical value. The result is a new periodic solution where the ball bounces laterally over the vertex. As the parabola is further steepened, this new solution also becomes unstable which gives rise to other complex periodic and chaotic bouncing states, all characterized by persistent lateral motion.</description><identifier>ISSN: 1054-1500</identifier><identifier>EISSN: 1089-7682</identifier><identifier>DOI: 10.1063/1.4962350</identifier><identifier>PMID: 27781478</identifier><identifier>CODEN: CHAOEH</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Bouncing ; Vertical motion</subject><ispartof>Chaos (Woodbury, N.Y.), 2016-09, Vol.26 (9), p.093105-093105</ispartof><rights>Author(s)</rights><rights>2016 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-c6aecf07b31dc8af4ba0c3753a8cf55c26660135ea8b1fc10cf032c5b28227633</citedby><cites>FETCH-LOGICAL-c449t-c6aecf07b31dc8af4ba0c3753a8cf55c26660135ea8b1fc10cf032c5b28227633</cites><orcidid>0000-0003-2615-9178</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,790,4498,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27781478$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>McBennett, Brendan G.</creatorcontrib><creatorcontrib>Harris, Daniel M.</creatorcontrib><title>Horizontal stability of a bouncing ball</title><title>Chaos (Woodbury, N.Y.)</title><addtitle>Chaos</addtitle><description>We present an investigation of a partially elastic ball bouncing on a vertically vibrated concave parabolic surface in two dimensions. In particular, we demonstrate that simple vertical motion, wherein the ball bounces periodically at the parabola's vertex, is unstable to horizontal perturbations when the parabolic coefficient defining the surface shape exceeds a critical value. The result is a new periodic solution where the ball bounces laterally over the vertex. As the parabola is further steepened, this new solution also becomes unstable which gives rise to other complex periodic and chaotic bouncing states, all characterized by persistent lateral motion.</description><subject>Bouncing</subject><subject>Vertical motion</subject><issn>1054-1500</issn><issn>1089-7682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp90EtLAzEUBeAgiq2PhX9ABlz4gKm5eU26FFErFNzoOiRpIinTSU1mhPrrndKqIOjq3sXH4XAQOgE8AizoNYzYWBDK8Q4aApbjshKS7K5_zkrgGA_QQc5zjDH0ah8NSFVJYJUcovNJTOEjNq2ui9xqE-rQroroC12Y2DU2NK-F0XV9hPa8rrM73t5D9HJ_93w7KadPD4-3N9PSMjZuSyu0sx5XhsLMSu2Z0djSilMtrefcEiEEBsqdlga8BdxjSiw3RBJSCUoP0cUmd5niW-dyqxYhW1fXunGxywok5UICZrynZ7_oPHap6dspAgQ4r5jAvbrcKJtizsl5tUxhodNKAVbr9RSo7Xq9Pd0mdmbhZt_ya64eXG1AtqHVbYjNv2l_4veYfqBazjz9BAYfgxA</recordid><startdate>201609</startdate><enddate>201609</enddate><creator>McBennett, Brendan G.</creator><creator>Harris, Daniel M.</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2615-9178</orcidid></search><sort><creationdate>201609</creationdate><title>Horizontal stability of a bouncing ball</title><author>McBennett, Brendan G. ; Harris, Daniel M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-c6aecf07b31dc8af4ba0c3753a8cf55c26660135ea8b1fc10cf032c5b28227633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Bouncing</topic><topic>Vertical motion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McBennett, Brendan G.</creatorcontrib><creatorcontrib>Harris, Daniel M.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Chaos (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McBennett, Brendan G.</au><au>Harris, Daniel M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Horizontal stability of a bouncing ball</atitle><jtitle>Chaos (Woodbury, N.Y.)</jtitle><addtitle>Chaos</addtitle><date>2016-09</date><risdate>2016</risdate><volume>26</volume><issue>9</issue><spage>093105</spage><epage>093105</epage><pages>093105-093105</pages><issn>1054-1500</issn><eissn>1089-7682</eissn><coden>CHAOEH</coden><abstract>We present an investigation of a partially elastic ball bouncing on a vertically vibrated concave parabolic surface in two dimensions. In particular, we demonstrate that simple vertical motion, wherein the ball bounces periodically at the parabola's vertex, is unstable to horizontal perturbations when the parabolic coefficient defining the surface shape exceeds a critical value. The result is a new periodic solution where the ball bounces laterally over the vertex. As the parabola is further steepened, this new solution also becomes unstable which gives rise to other complex periodic and chaotic bouncing states, all characterized by persistent lateral motion.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>27781478</pmid><doi>10.1063/1.4962350</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-2615-9178</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1054-1500
ispartof Chaos (Woodbury, N.Y.), 2016-09, Vol.26 (9), p.093105-093105
issn 1054-1500
1089-7682
language eng
recordid cdi_scitation_primary_10_1063_1_4962350
source AIP Journals Complete; Alma/SFX Local Collection
subjects Bouncing
Vertical motion
title Horizontal stability of a bouncing ball
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T03%3A10%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Horizontal%20stability%20of%20a%20bouncing%20ball&rft.jtitle=Chaos%20(Woodbury,%20N.Y.)&rft.au=McBennett,%20Brendan%20G.&rft.date=2016-09&rft.volume=26&rft.issue=9&rft.spage=093105&rft.epage=093105&rft.pages=093105-093105&rft.issn=1054-1500&rft.eissn=1089-7682&rft.coden=CHAOEH&rft_id=info:doi/10.1063/1.4962350&rft_dat=%3Cproquest_scita%3E1835681045%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2121557460&rft_id=info:pmid/27781478&rfr_iscdi=true