Designing the method for optical in vitro monitoring of the cell-mediated scaffold technology for bone regeneration based on laser-induced fluorescence spectroscopy
One of the main unsolved problems in traumatology and orthopedics is reconstruction of critical-sized segmental bone defects. We believe that implementation of noninvasive monitoring of the bioengineering stages for cell-mediated bone scaffold by laser-induced fluorescence (LIF) can become a positiv...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 1760 |
creator | Larionov, P. M. Maslov, N. A. Papaeva, E. O. Tereshchenko, V. P. Khlestkin, V. K. Bogachev, S. S. Proskurina, A. S. Titov, A. T. Filipenko, M. L. Pavlov, V. V. Kudrov, G. A. Orishich, A. M. |
description | One of the main unsolved problems in traumatology and orthopedics is reconstruction of critical-sized segmental bone defects. We believe that implementation of noninvasive monitoring of the bioengineering stages for cell-mediated bone scaffold by laser-induced fluorescence (LIF) can become a positive aspect in mastering this technique. An electrospun scaffold model (parameters: 10 wt. % polycaprolactone; 5% wt type A gelatin; mean fiber diameter 877.1 ± 169.1, and contact angle 45.3°) seeded with BHK IR cell culture (182 ± 38 cells/mm2) was used to show the principal possibility of differentiating between the scaffold seeded and unseeded with cells. First of all, the fluorescence spectra of the cell-seeded scaffold contain a peak at 305 nm for the excitation range of 230–290 nm, which can be used to differentiate between the samples. An increase in fluorescence intensity of the cell-seeded scaffold in the range of 400– 580 nm upon excitation at 230–340 nm is also noticeable. The wavelength of 250 nm is characterized by high signal intensity and is most suitable for differentiation between the samples. |
doi_str_mv | 10.1063/1.4960260 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_4960260</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2121707708</sourcerecordid><originalsourceid>FETCH-LOGICAL-p253t-af6c79eb2432d5193933329f599727a89c3c57c1a6c0671711ac9b6fe4c4980f3</originalsourceid><addsrcrecordid>eNp9kc1qHDEQhEVIIBvHB7-BIDfD2PqZkVZH48Q_YPDFhtwGbU9rV2ZWPZG0hn0fP2jGa4NvPnXRfFRRFGMnUpxJYfS5PGudEcqIL2whu0421kjzlS2EcG2jWv33O_tRypMQylm7XLCX31jiOsW05nWDfIt1QwMPlDlNNYIfeUz8OdZMfEspVsqvKIUDDTiOzRaH6CsOvIAPgcaBV4RNopHW-4PRihLyjGtMmH2NlPjKl5mfxTiL3MQ07GB-hHFHGQtgAuRlQphTC9C0_8m-BT8WPH6_R-zx6s_D5U1zd399e3lx10yq07XxwYB1uJprqqGTTjuttXKhc84q65cONHQWpDcgjJVWSg9uZQK20LqlCPqI_XrznTL922Gp_RPtcpojeyWVtMJasZyp0zeqQKyHQv2U49bnfS9F_7pCL_v3FT6Dnyl_gP00BP0ftBqL0g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2121707708</pqid></control><display><type>conference_proceeding</type><title>Designing the method for optical in vitro monitoring of the cell-mediated scaffold technology for bone regeneration based on laser-induced fluorescence spectroscopy</title><source>AIP Journals Complete</source><creator>Larionov, P. M. ; Maslov, N. A. ; Papaeva, E. O. ; Tereshchenko, V. P. ; Khlestkin, V. K. ; Bogachev, S. S. ; Proskurina, A. S. ; Titov, A. T. ; Filipenko, M. L. ; Pavlov, V. V. ; Kudrov, G. A. ; Orishich, A. M.</creator><contributor>Naimark, Oleg B. ; Sharkeev, Yurii P. ; Gutmanas, Elazar Y.</contributor><creatorcontrib>Larionov, P. M. ; Maslov, N. A. ; Papaeva, E. O. ; Tereshchenko, V. P. ; Khlestkin, V. K. ; Bogachev, S. S. ; Proskurina, A. S. ; Titov, A. T. ; Filipenko, M. L. ; Pavlov, V. V. ; Kudrov, G. A. ; Orishich, A. M. ; Naimark, Oleg B. ; Sharkeev, Yurii P. ; Gutmanas, Elazar Y.</creatorcontrib><description>One of the main unsolved problems in traumatology and orthopedics is reconstruction of critical-sized segmental bone defects. We believe that implementation of noninvasive monitoring of the bioengineering stages for cell-mediated bone scaffold by laser-induced fluorescence (LIF) can become a positive aspect in mastering this technique. An electrospun scaffold model (parameters: 10 wt. % polycaprolactone; 5% wt type A gelatin; mean fiber diameter 877.1 ± 169.1, and contact angle 45.3°) seeded with BHK IR cell culture (182 ± 38 cells/mm2) was used to show the principal possibility of differentiating between the scaffold seeded and unseeded with cells. First of all, the fluorescence spectra of the cell-seeded scaffold contain a peak at 305 nm for the excitation range of 230–290 nm, which can be used to differentiate between the samples. An increase in fluorescence intensity of the cell-seeded scaffold in the range of 400– 580 nm upon excitation at 230–340 nm is also noticeable. The wavelength of 250 nm is characterized by high signal intensity and is most suitable for differentiation between the samples.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.4960260</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Bioengineering ; Contact angle ; Excitation ; Gelatin ; In vitro methods and tests ; Laser induced fluorescence ; Mastering ; Monitoring ; Orthopedics ; Polycaprolactone ; Regeneration (physiology) ; Scaffolds ; Spectrum analysis</subject><ispartof>AIP Conference Proceedings, 2016, Vol.1760 (1)</ispartof><rights>Author(s)</rights><rights>2016 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/1.4960260$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4512,23930,23931,25140,27924,27925,76384</link.rule.ids></links><search><contributor>Naimark, Oleg B.</contributor><contributor>Sharkeev, Yurii P.</contributor><contributor>Gutmanas, Elazar Y.</contributor><creatorcontrib>Larionov, P. M.</creatorcontrib><creatorcontrib>Maslov, N. A.</creatorcontrib><creatorcontrib>Papaeva, E. O.</creatorcontrib><creatorcontrib>Tereshchenko, V. P.</creatorcontrib><creatorcontrib>Khlestkin, V. K.</creatorcontrib><creatorcontrib>Bogachev, S. S.</creatorcontrib><creatorcontrib>Proskurina, A. S.</creatorcontrib><creatorcontrib>Titov, A. T.</creatorcontrib><creatorcontrib>Filipenko, M. L.</creatorcontrib><creatorcontrib>Pavlov, V. V.</creatorcontrib><creatorcontrib>Kudrov, G. A.</creatorcontrib><creatorcontrib>Orishich, A. M.</creatorcontrib><title>Designing the method for optical in vitro monitoring of the cell-mediated scaffold technology for bone regeneration based on laser-induced fluorescence spectroscopy</title><title>AIP Conference Proceedings</title><description>One of the main unsolved problems in traumatology and orthopedics is reconstruction of critical-sized segmental bone defects. We believe that implementation of noninvasive monitoring of the bioengineering stages for cell-mediated bone scaffold by laser-induced fluorescence (LIF) can become a positive aspect in mastering this technique. An electrospun scaffold model (parameters: 10 wt. % polycaprolactone; 5% wt type A gelatin; mean fiber diameter 877.1 ± 169.1, and contact angle 45.3°) seeded with BHK IR cell culture (182 ± 38 cells/mm2) was used to show the principal possibility of differentiating between the scaffold seeded and unseeded with cells. First of all, the fluorescence spectra of the cell-seeded scaffold contain a peak at 305 nm for the excitation range of 230–290 nm, which can be used to differentiate between the samples. An increase in fluorescence intensity of the cell-seeded scaffold in the range of 400– 580 nm upon excitation at 230–340 nm is also noticeable. The wavelength of 250 nm is characterized by high signal intensity and is most suitable for differentiation between the samples.</description><subject>Bioengineering</subject><subject>Contact angle</subject><subject>Excitation</subject><subject>Gelatin</subject><subject>In vitro methods and tests</subject><subject>Laser induced fluorescence</subject><subject>Mastering</subject><subject>Monitoring</subject><subject>Orthopedics</subject><subject>Polycaprolactone</subject><subject>Regeneration (physiology)</subject><subject>Scaffolds</subject><subject>Spectrum analysis</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2016</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kc1qHDEQhEVIIBvHB7-BIDfD2PqZkVZH48Q_YPDFhtwGbU9rV2ZWPZG0hn0fP2jGa4NvPnXRfFRRFGMnUpxJYfS5PGudEcqIL2whu0421kjzlS2EcG2jWv33O_tRypMQylm7XLCX31jiOsW05nWDfIt1QwMPlDlNNYIfeUz8OdZMfEspVsqvKIUDDTiOzRaH6CsOvIAPgcaBV4RNopHW-4PRihLyjGtMmH2NlPjKl5mfxTiL3MQ07GB-hHFHGQtgAuRlQphTC9C0_8m-BT8WPH6_R-zx6s_D5U1zd399e3lx10yq07XxwYB1uJprqqGTTjuttXKhc84q65cONHQWpDcgjJVWSg9uZQK20LqlCPqI_XrznTL922Gp_RPtcpojeyWVtMJasZyp0zeqQKyHQv2U49bnfS9F_7pCL_v3FT6Dnyl_gP00BP0ftBqL0g</recordid><startdate>20160802</startdate><enddate>20160802</enddate><creator>Larionov, P. M.</creator><creator>Maslov, N. A.</creator><creator>Papaeva, E. O.</creator><creator>Tereshchenko, V. P.</creator><creator>Khlestkin, V. K.</creator><creator>Bogachev, S. S.</creator><creator>Proskurina, A. S.</creator><creator>Titov, A. T.</creator><creator>Filipenko, M. L.</creator><creator>Pavlov, V. V.</creator><creator>Kudrov, G. A.</creator><creator>Orishich, A. M.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20160802</creationdate><title>Designing the method for optical in vitro monitoring of the cell-mediated scaffold technology for bone regeneration based on laser-induced fluorescence spectroscopy</title><author>Larionov, P. M. ; Maslov, N. A. ; Papaeva, E. O. ; Tereshchenko, V. P. ; Khlestkin, V. K. ; Bogachev, S. S. ; Proskurina, A. S. ; Titov, A. T. ; Filipenko, M. L. ; Pavlov, V. V. ; Kudrov, G. A. ; Orishich, A. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p253t-af6c79eb2432d5193933329f599727a89c3c57c1a6c0671711ac9b6fe4c4980f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Bioengineering</topic><topic>Contact angle</topic><topic>Excitation</topic><topic>Gelatin</topic><topic>In vitro methods and tests</topic><topic>Laser induced fluorescence</topic><topic>Mastering</topic><topic>Monitoring</topic><topic>Orthopedics</topic><topic>Polycaprolactone</topic><topic>Regeneration (physiology)</topic><topic>Scaffolds</topic><topic>Spectrum analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Larionov, P. M.</creatorcontrib><creatorcontrib>Maslov, N. A.</creatorcontrib><creatorcontrib>Papaeva, E. O.</creatorcontrib><creatorcontrib>Tereshchenko, V. P.</creatorcontrib><creatorcontrib>Khlestkin, V. K.</creatorcontrib><creatorcontrib>Bogachev, S. S.</creatorcontrib><creatorcontrib>Proskurina, A. S.</creatorcontrib><creatorcontrib>Titov, A. T.</creatorcontrib><creatorcontrib>Filipenko, M. L.</creatorcontrib><creatorcontrib>Pavlov, V. V.</creatorcontrib><creatorcontrib>Kudrov, G. A.</creatorcontrib><creatorcontrib>Orishich, A. M.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Larionov, P. M.</au><au>Maslov, N. A.</au><au>Papaeva, E. O.</au><au>Tereshchenko, V. P.</au><au>Khlestkin, V. K.</au><au>Bogachev, S. S.</au><au>Proskurina, A. S.</au><au>Titov, A. T.</au><au>Filipenko, M. L.</au><au>Pavlov, V. V.</au><au>Kudrov, G. A.</au><au>Orishich, A. M.</au><au>Naimark, Oleg B.</au><au>Sharkeev, Yurii P.</au><au>Gutmanas, Elazar Y.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Designing the method for optical in vitro monitoring of the cell-mediated scaffold technology for bone regeneration based on laser-induced fluorescence spectroscopy</atitle><btitle>AIP Conference Proceedings</btitle><date>2016-08-02</date><risdate>2016</risdate><volume>1760</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>One of the main unsolved problems in traumatology and orthopedics is reconstruction of critical-sized segmental bone defects. We believe that implementation of noninvasive monitoring of the bioengineering stages for cell-mediated bone scaffold by laser-induced fluorescence (LIF) can become a positive aspect in mastering this technique. An electrospun scaffold model (parameters: 10 wt. % polycaprolactone; 5% wt type A gelatin; mean fiber diameter 877.1 ± 169.1, and contact angle 45.3°) seeded with BHK IR cell culture (182 ± 38 cells/mm2) was used to show the principal possibility of differentiating between the scaffold seeded and unseeded with cells. First of all, the fluorescence spectra of the cell-seeded scaffold contain a peak at 305 nm for the excitation range of 230–290 nm, which can be used to differentiate between the samples. An increase in fluorescence intensity of the cell-seeded scaffold in the range of 400– 580 nm upon excitation at 230–340 nm is also noticeable. The wavelength of 250 nm is characterized by high signal intensity and is most suitable for differentiation between the samples.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4960260</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP Conference Proceedings, 2016, Vol.1760 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_scitation_primary_10_1063_1_4960260 |
source | AIP Journals Complete |
subjects | Bioengineering Contact angle Excitation Gelatin In vitro methods and tests Laser induced fluorescence Mastering Monitoring Orthopedics Polycaprolactone Regeneration (physiology) Scaffolds Spectrum analysis |
title | Designing the method for optical in vitro monitoring of the cell-mediated scaffold technology for bone regeneration based on laser-induced fluorescence spectroscopy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T12%3A31%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Designing%20the%20method%20for%20optical%20in%20vitro%20monitoring%20of%20the%20cell-mediated%20scaffold%20technology%20for%20bone%20regeneration%20based%20on%20laser-induced%20fluorescence%20spectroscopy&rft.btitle=AIP%20Conference%20Proceedings&rft.au=Larionov,%20P.%20M.&rft.date=2016-08-02&rft.volume=1760&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/1.4960260&rft_dat=%3Cproquest_scita%3E2121707708%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2121707708&rft_id=info:pmid/&rfr_iscdi=true |