Dynamic measurements and simulations of airborne picolitre-droplet coalescence in holographic optical tweezers
We report studies of the coalescence of pairs of picolitre aerosol droplets manipulated with holographic optical tweezers, probing the shape relaxation dynamics following coalescence by simultaneously monitoring the intensity of elastic backscattered light (EBL) from the trapping laser beam (time re...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2016-08, Vol.145 (5), p.054502-054502 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 054502 |
---|---|
container_issue | 5 |
container_start_page | 054502 |
container_title | The Journal of chemical physics |
container_volume | 145 |
creator | Bzdek, Bryan R. Collard, Liam Sprittles, James E. Hudson, Andrew J. Reid, Jonathan P. |
description | We report studies of the coalescence of pairs of picolitre aerosol droplets manipulated with holographic optical tweezers, probing the shape relaxation dynamics following coalescence by simultaneously monitoring the intensity of elastic backscattered light (EBL) from the trapping laser beam (time resolution on the order of 100 ns) while recording high frame rate camera images (time resolution |
doi_str_mv | 10.1063/1.4959901 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_4959901</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1810356506</sourcerecordid><originalsourceid>FETCH-LOGICAL-c512t-6847ee09f38945f0456f960aaf27980d9a7923cb55a8187b7b016ce98f2fa3a13</originalsourceid><addsrcrecordid>eNp90U-P1SAUBXBiNM5zdOEXMCRu1KTjhRYoy8n4N5nEja4JpRcfkxYqUM346e34ns-Vrtj8cnIPh5CnDC4YyPY1u-i00BrYPbJj0OtGSQ33yQ6As0ZLkGfkUSk3AMAU7x6SM646rYSEHYlvbqOdg6Mz2rJmnDHWQm0caQnzOtkaUiw0eWpDHlKOSJfg0hRqxmbMaZmwUpfshMVhdEhDpPs0pa_ZLvstNS01ODvR-gPxJ-bymDzwdir45Pieky_v3n6--tBcf3r_8eryunGC8drIvlOIoH3b60546IT0Ww9rPVe6h1FbpXnrBiFsz3o1qAGYdKh7z71tLWvPyfNDbio1mOJCRbd3KUZ01XAulQbeb-rFQS05fVuxVDOHrcc02YhpLYb1DFohxfbHp8ATvUlrjlsHwxlnCpRQ7aZeHpTLqZSM3iw5zDbfGgbmbirDzHGqzT47Jq7DjONJ_tlmA68O4O7830P8N-2f-HvKf6FZRt_-Aqo2qmE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2121707573</pqid></control><display><type>article</type><title>Dynamic measurements and simulations of airborne picolitre-droplet coalescence in holographic optical tweezers</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Bzdek, Bryan R. ; Collard, Liam ; Sprittles, James E. ; Hudson, Andrew J. ; Reid, Jonathan P.</creator><creatorcontrib>Bzdek, Bryan R. ; Collard, Liam ; Sprittles, James E. ; Hudson, Andrew J. ; Reid, Jonathan P.</creatorcontrib><description>We report studies of the coalescence of pairs of picolitre aerosol droplets manipulated with holographic optical tweezers, probing the shape relaxation dynamics following coalescence by simultaneously monitoring the intensity of elastic backscattered light (EBL) from the trapping laser beam (time resolution on the order of 100 ns) while recording high frame rate camera images (time resolution <10 μs). The goals of this work are to: resolve the dynamics of droplet coalescence in holographic optical traps; assign the origin of key features in the time-dependent EBL intensity; and validate the use of the EBL alone to precisely determine droplet surface tension and viscosity. For low viscosity droplets, two sequential processes are evident: binary coalescence first results from the overlap of the optical traps on the time scale of microseconds followed by the recapture of the composite droplet in an optical trap on the time scale of milliseconds. As droplet viscosity increases, the relaxation in droplet shape eventually occurs on the same time scale as recapture, resulting in a convoluted evolution of the EBL intensity that inhibits quantitative determination of the relaxation time scale. Droplet coalescence was simulated using a computational framework to validate both experimental approaches. The results indicate that time-dependent monitoring of droplet shape from the EBL intensity allows for robust determination of properties such as surface tension and viscosity. Finally, the potential of high frame rate imaging to examine the coalescence of dissimilar viscosity droplets is discussed.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.4959901</identifier><identifier>PMID: 27497560</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Airborne sensing ; Backscattering ; COALESCENCE ; Coalescing ; Computer simulation ; DROPLETS ; EXPERIMENTAL DATA ; Frames (data processing) ; HOLOGRAPHY ; INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY ; Laser beams ; Luminous intensity ; Monitoring ; Optical traps ; Physics ; Recording ; RELAXATION TIME ; SIMULATION ; SURFACE TENSION ; TIME DEPENDENCE ; TIME RESOLUTION ; VISCOSITY</subject><ispartof>The Journal of chemical physics, 2016-08, Vol.145 (5), p.054502-054502</ispartof><rights>Author(s)</rights><rights>2016 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c512t-6847ee09f38945f0456f960aaf27980d9a7923cb55a8187b7b016ce98f2fa3a13</citedby><cites>FETCH-LOGICAL-c512t-6847ee09f38945f0456f960aaf27980d9a7923cb55a8187b7b016ce98f2fa3a13</cites><orcidid>0000-0002-4169-6468 ; 0000-0001-6022-1778</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/1.4959901$$EHTML$$P50$$Gscitation$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,794,885,4510,27923,27924,76155</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27497560$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/22679028$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Bzdek, Bryan R.</creatorcontrib><creatorcontrib>Collard, Liam</creatorcontrib><creatorcontrib>Sprittles, James E.</creatorcontrib><creatorcontrib>Hudson, Andrew J.</creatorcontrib><creatorcontrib>Reid, Jonathan P.</creatorcontrib><title>Dynamic measurements and simulations of airborne picolitre-droplet coalescence in holographic optical tweezers</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>We report studies of the coalescence of pairs of picolitre aerosol droplets manipulated with holographic optical tweezers, probing the shape relaxation dynamics following coalescence by simultaneously monitoring the intensity of elastic backscattered light (EBL) from the trapping laser beam (time resolution on the order of 100 ns) while recording high frame rate camera images (time resolution <10 μs). The goals of this work are to: resolve the dynamics of droplet coalescence in holographic optical traps; assign the origin of key features in the time-dependent EBL intensity; and validate the use of the EBL alone to precisely determine droplet surface tension and viscosity. For low viscosity droplets, two sequential processes are evident: binary coalescence first results from the overlap of the optical traps on the time scale of microseconds followed by the recapture of the composite droplet in an optical trap on the time scale of milliseconds. As droplet viscosity increases, the relaxation in droplet shape eventually occurs on the same time scale as recapture, resulting in a convoluted evolution of the EBL intensity that inhibits quantitative determination of the relaxation time scale. Droplet coalescence was simulated using a computational framework to validate both experimental approaches. The results indicate that time-dependent monitoring of droplet shape from the EBL intensity allows for robust determination of properties such as surface tension and viscosity. Finally, the potential of high frame rate imaging to examine the coalescence of dissimilar viscosity droplets is discussed.</description><subject>Airborne sensing</subject><subject>Backscattering</subject><subject>COALESCENCE</subject><subject>Coalescing</subject><subject>Computer simulation</subject><subject>DROPLETS</subject><subject>EXPERIMENTAL DATA</subject><subject>Frames (data processing)</subject><subject>HOLOGRAPHY</subject><subject>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</subject><subject>Laser beams</subject><subject>Luminous intensity</subject><subject>Monitoring</subject><subject>Optical traps</subject><subject>Physics</subject><subject>Recording</subject><subject>RELAXATION TIME</subject><subject>SIMULATION</subject><subject>SURFACE TENSION</subject><subject>TIME DEPENDENCE</subject><subject>TIME RESOLUTION</subject><subject>VISCOSITY</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp90U-P1SAUBXBiNM5zdOEXMCRu1KTjhRYoy8n4N5nEja4JpRcfkxYqUM346e34ns-Vrtj8cnIPh5CnDC4YyPY1u-i00BrYPbJj0OtGSQ33yQ6As0ZLkGfkUSk3AMAU7x6SM646rYSEHYlvbqOdg6Mz2rJmnDHWQm0caQnzOtkaUiw0eWpDHlKOSJfg0hRqxmbMaZmwUpfshMVhdEhDpPs0pa_ZLvstNS01ODvR-gPxJ-bymDzwdir45Pieky_v3n6--tBcf3r_8eryunGC8drIvlOIoH3b60546IT0Ww9rPVe6h1FbpXnrBiFsz3o1qAGYdKh7z71tLWvPyfNDbio1mOJCRbd3KUZ01XAulQbeb-rFQS05fVuxVDOHrcc02YhpLYb1DFohxfbHp8ATvUlrjlsHwxlnCpRQ7aZeHpTLqZSM3iw5zDbfGgbmbirDzHGqzT47Jq7DjONJ_tlmA68O4O7830P8N-2f-HvKf6FZRt_-Aqo2qmE</recordid><startdate>20160807</startdate><enddate>20160807</enddate><creator>Bzdek, Bryan R.</creator><creator>Collard, Liam</creator><creator>Sprittles, James E.</creator><creator>Hudson, Andrew J.</creator><creator>Reid, Jonathan P.</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-4169-6468</orcidid><orcidid>https://orcid.org/0000-0001-6022-1778</orcidid></search><sort><creationdate>20160807</creationdate><title>Dynamic measurements and simulations of airborne picolitre-droplet coalescence in holographic optical tweezers</title><author>Bzdek, Bryan R. ; Collard, Liam ; Sprittles, James E. ; Hudson, Andrew J. ; Reid, Jonathan P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c512t-6847ee09f38945f0456f960aaf27980d9a7923cb55a8187b7b016ce98f2fa3a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Airborne sensing</topic><topic>Backscattering</topic><topic>COALESCENCE</topic><topic>Coalescing</topic><topic>Computer simulation</topic><topic>DROPLETS</topic><topic>EXPERIMENTAL DATA</topic><topic>Frames (data processing)</topic><topic>HOLOGRAPHY</topic><topic>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</topic><topic>Laser beams</topic><topic>Luminous intensity</topic><topic>Monitoring</topic><topic>Optical traps</topic><topic>Physics</topic><topic>Recording</topic><topic>RELAXATION TIME</topic><topic>SIMULATION</topic><topic>SURFACE TENSION</topic><topic>TIME DEPENDENCE</topic><topic>TIME RESOLUTION</topic><topic>VISCOSITY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bzdek, Bryan R.</creatorcontrib><creatorcontrib>Collard, Liam</creatorcontrib><creatorcontrib>Sprittles, James E.</creatorcontrib><creatorcontrib>Hudson, Andrew J.</creatorcontrib><creatorcontrib>Reid, Jonathan P.</creatorcontrib><collection>AIP Open Access Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bzdek, Bryan R.</au><au>Collard, Liam</au><au>Sprittles, James E.</au><au>Hudson, Andrew J.</au><au>Reid, Jonathan P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic measurements and simulations of airborne picolitre-droplet coalescence in holographic optical tweezers</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2016-08-07</date><risdate>2016</risdate><volume>145</volume><issue>5</issue><spage>054502</spage><epage>054502</epage><pages>054502-054502</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>We report studies of the coalescence of pairs of picolitre aerosol droplets manipulated with holographic optical tweezers, probing the shape relaxation dynamics following coalescence by simultaneously monitoring the intensity of elastic backscattered light (EBL) from the trapping laser beam (time resolution on the order of 100 ns) while recording high frame rate camera images (time resolution <10 μs). The goals of this work are to: resolve the dynamics of droplet coalescence in holographic optical traps; assign the origin of key features in the time-dependent EBL intensity; and validate the use of the EBL alone to precisely determine droplet surface tension and viscosity. For low viscosity droplets, two sequential processes are evident: binary coalescence first results from the overlap of the optical traps on the time scale of microseconds followed by the recapture of the composite droplet in an optical trap on the time scale of milliseconds. As droplet viscosity increases, the relaxation in droplet shape eventually occurs on the same time scale as recapture, resulting in a convoluted evolution of the EBL intensity that inhibits quantitative determination of the relaxation time scale. Droplet coalescence was simulated using a computational framework to validate both experimental approaches. The results indicate that time-dependent monitoring of droplet shape from the EBL intensity allows for robust determination of properties such as surface tension and viscosity. Finally, the potential of high frame rate imaging to examine the coalescence of dissimilar viscosity droplets is discussed.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>27497560</pmid><doi>10.1063/1.4959901</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4169-6468</orcidid><orcidid>https://orcid.org/0000-0001-6022-1778</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2016-08, Vol.145 (5), p.054502-054502 |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_scitation_primary_10_1063_1_4959901 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Airborne sensing Backscattering COALESCENCE Coalescing Computer simulation DROPLETS EXPERIMENTAL DATA Frames (data processing) HOLOGRAPHY INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY Laser beams Luminous intensity Monitoring Optical traps Physics Recording RELAXATION TIME SIMULATION SURFACE TENSION TIME DEPENDENCE TIME RESOLUTION VISCOSITY |
title | Dynamic measurements and simulations of airborne picolitre-droplet coalescence in holographic optical tweezers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T14%3A40%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20measurements%20and%20simulations%20of%20airborne%20picolitre-droplet%20coalescence%20in%20holographic%20optical%20tweezers&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Bzdek,%20Bryan%20R.&rft.date=2016-08-07&rft.volume=145&rft.issue=5&rft.spage=054502&rft.epage=054502&rft.pages=054502-054502&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/1.4959901&rft_dat=%3Cproquest_scita%3E1810356506%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2121707573&rft_id=info:pmid/27497560&rfr_iscdi=true |