Non-Maxwellian to Maxwellian transitions of atmospheric microplasmas at microwave frequencies
Particle-in-cell/Monte Carlo simulations and numerical analysis of a single particle motion are performed for atmospheric He microplasmas at microwave frequencies to determine the characteristics of non-Maxwellian to Maxwellian transition. The left and the right regimes of Paschen curve, divided by...
Gespeichert in:
Veröffentlicht in: | Physics of plasmas 2016-07, Vol.23 (7) |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 7 |
container_start_page | |
container_title | Physics of plasmas |
container_volume | 23 |
creator | Lee, M. U. Jeong, S. Y. Won, I. H. Sung, S. K. Yun, G. S. Lee, J. K. |
description | Particle-in-cell/Monte Carlo simulations and numerical analysis of a single particle motion are performed for atmospheric He microplasmas at microwave frequencies to determine the characteristics of non-Maxwellian to Maxwellian transition. The left and the right regimes of Paschen curve, divided by this transition, reveal that the transition frequencies depend on the gap of electrodes and the neutral gas pressure to follow scaling laws for a new extended Paschen law. The fluid models are reasonable at the right-side regime of Paschen breakdown areas, but not on the left side, which is highly kinetic for electrons. The plasmas driven by weaker electric fields of high enough frequencies at the right-side Paschen regime breed more energetic electrons. |
doi_str_mv | 10.1063/1.4959857 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_4959857</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2121707361</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-6a0ffeae8637fec7f46d6f4a36c6d284806320136c5de8628e48ce2b0c5c5e6c3</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK4e_AYFTwpdk7RJ26Ms_oNVLwpeJMR0wmbpJjXp7uq3N6WLKwieZh7zY-bNQ-iU4AnBPLskk7xiVcmKPTQiuKzSghf5ft8XOOU8fz1ERyEsMMY5Z-UIvT06mz7Izw00jZE26VzyW3lpg-mMsyFxOpHd0oV2Dt6oZGmUd20jw1KGOBj0Rq4h0R4-VmCVgXCMDrRsApxs6xi93Fw_T-_S2dPt_fRqlqqMsS7lEmsNEkqeFRpUoXNec53LjCte0zIv42cUkyhZHSFaQl4qoO9YMcWAq2yMzoa9LnRGBGU6UHPlrAXVCUpZVVWc7qjWu-gwdGLhVt5GY4ISSgpcZJxE6nyg4j8heNCi9WYp_ZcgWPQZCyK2GUf2YmD7k7LP6QdeO78DRVvr_-C_m78BMe-Lwg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2121707361</pqid></control><display><type>article</type><title>Non-Maxwellian to Maxwellian transitions of atmospheric microplasmas at microwave frequencies</title><source>American Institute of Physics (AIP) Journals</source><source>Alma/SFX Local Collection</source><creator>Lee, M. U. ; Jeong, S. Y. ; Won, I. H. ; Sung, S. K. ; Yun, G. S. ; Lee, J. K.</creator><creatorcontrib>Lee, M. U. ; Jeong, S. Y. ; Won, I. H. ; Sung, S. K. ; Yun, G. S. ; Lee, J. K.</creatorcontrib><description>Particle-in-cell/Monte Carlo simulations and numerical analysis of a single particle motion are performed for atmospheric He microplasmas at microwave frequencies to determine the characteristics of non-Maxwellian to Maxwellian transition. The left and the right regimes of Paschen curve, divided by this transition, reveal that the transition frequencies depend on the gap of electrodes and the neutral gas pressure to follow scaling laws for a new extended Paschen law. The fluid models are reasonable at the right-side regime of Paschen breakdown areas, but not on the left side, which is highly kinetic for electrons. The plasmas driven by weaker electric fields of high enough frequencies at the right-side Paschen regime breed more energetic electrons.</description><identifier>ISSN: 1070-664X</identifier><identifier>EISSN: 1089-7674</identifier><identifier>DOI: 10.1063/1.4959857</identifier><identifier>CODEN: PHPAEN</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; Atmospheric models ; BREAKDOWN ; Computer simulation ; COMPUTERIZED SIMULATION ; ELECTRIC FIELDS ; ELECTRODES ; Electrons ; FLUIDS ; Gas pressure ; Microplasmas ; Microwave frequencies ; MICROWAVE RADIATION ; MONTE CARLO METHOD ; Monte Carlo simulation ; Neutral gases ; NUMERICAL ANALYSIS ; Particle in cell technique ; Particle motion ; PARTICLES ; PASCHEN LAW ; PLASMA ; Plasmas ; SCALING LAWS ; TAIL ELECTRONS</subject><ispartof>Physics of plasmas, 2016-07, Vol.23 (7)</ispartof><rights>Author(s)</rights><rights>2016 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-6a0ffeae8637fec7f46d6f4a36c6d284806320136c5de8628e48ce2b0c5c5e6c3</citedby><cites>FETCH-LOGICAL-c355t-6a0ffeae8637fec7f46d6f4a36c6d284806320136c5de8628e48ce2b0c5c5e6c3</cites><orcidid>0000-0002-4311-1195 ; 0000-0003-0528-3583 ; 0000-0003-2897-0108</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/pop/article-lookup/doi/10.1063/1.4959857$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,776,780,790,881,4497,27903,27904,76131</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22599962$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, M. U.</creatorcontrib><creatorcontrib>Jeong, S. Y.</creatorcontrib><creatorcontrib>Won, I. H.</creatorcontrib><creatorcontrib>Sung, S. K.</creatorcontrib><creatorcontrib>Yun, G. S.</creatorcontrib><creatorcontrib>Lee, J. K.</creatorcontrib><title>Non-Maxwellian to Maxwellian transitions of atmospheric microplasmas at microwave frequencies</title><title>Physics of plasmas</title><description>Particle-in-cell/Monte Carlo simulations and numerical analysis of a single particle motion are performed for atmospheric He microplasmas at microwave frequencies to determine the characteristics of non-Maxwellian to Maxwellian transition. The left and the right regimes of Paschen curve, divided by this transition, reveal that the transition frequencies depend on the gap of electrodes and the neutral gas pressure to follow scaling laws for a new extended Paschen law. The fluid models are reasonable at the right-side regime of Paschen breakdown areas, but not on the left side, which is highly kinetic for electrons. The plasmas driven by weaker electric fields of high enough frequencies at the right-side Paschen regime breed more energetic electrons.</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>Atmospheric models</subject><subject>BREAKDOWN</subject><subject>Computer simulation</subject><subject>COMPUTERIZED SIMULATION</subject><subject>ELECTRIC FIELDS</subject><subject>ELECTRODES</subject><subject>Electrons</subject><subject>FLUIDS</subject><subject>Gas pressure</subject><subject>Microplasmas</subject><subject>Microwave frequencies</subject><subject>MICROWAVE RADIATION</subject><subject>MONTE CARLO METHOD</subject><subject>Monte Carlo simulation</subject><subject>Neutral gases</subject><subject>NUMERICAL ANALYSIS</subject><subject>Particle in cell technique</subject><subject>Particle motion</subject><subject>PARTICLES</subject><subject>PASCHEN LAW</subject><subject>PLASMA</subject><subject>Plasmas</subject><subject>SCALING LAWS</subject><subject>TAIL ELECTRONS</subject><issn>1070-664X</issn><issn>1089-7674</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK4e_AYFTwpdk7RJ26Ms_oNVLwpeJMR0wmbpJjXp7uq3N6WLKwieZh7zY-bNQ-iU4AnBPLskk7xiVcmKPTQiuKzSghf5ft8XOOU8fz1ERyEsMMY5Z-UIvT06mz7Izw00jZE26VzyW3lpg-mMsyFxOpHd0oV2Dt6oZGmUd20jw1KGOBj0Rq4h0R4-VmCVgXCMDrRsApxs6xi93Fw_T-_S2dPt_fRqlqqMsS7lEmsNEkqeFRpUoXNec53LjCte0zIv42cUkyhZHSFaQl4qoO9YMcWAq2yMzoa9LnRGBGU6UHPlrAXVCUpZVVWc7qjWu-gwdGLhVt5GY4ISSgpcZJxE6nyg4j8heNCi9WYp_ZcgWPQZCyK2GUf2YmD7k7LP6QdeO78DRVvr_-C_m78BMe-Lwg</recordid><startdate>20160701</startdate><enddate>20160701</enddate><creator>Lee, M. U.</creator><creator>Jeong, S. Y.</creator><creator>Won, I. H.</creator><creator>Sung, S. K.</creator><creator>Yun, G. S.</creator><creator>Lee, J. K.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-4311-1195</orcidid><orcidid>https://orcid.org/0000-0003-0528-3583</orcidid><orcidid>https://orcid.org/0000-0003-2897-0108</orcidid></search><sort><creationdate>20160701</creationdate><title>Non-Maxwellian to Maxwellian transitions of atmospheric microplasmas at microwave frequencies</title><author>Lee, M. U. ; Jeong, S. Y. ; Won, I. H. ; Sung, S. K. ; Yun, G. S. ; Lee, J. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-6a0ffeae8637fec7f46d6f4a36c6d284806320136c5de8628e48ce2b0c5c5e6c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>Atmospheric models</topic><topic>BREAKDOWN</topic><topic>Computer simulation</topic><topic>COMPUTERIZED SIMULATION</topic><topic>ELECTRIC FIELDS</topic><topic>ELECTRODES</topic><topic>Electrons</topic><topic>FLUIDS</topic><topic>Gas pressure</topic><topic>Microplasmas</topic><topic>Microwave frequencies</topic><topic>MICROWAVE RADIATION</topic><topic>MONTE CARLO METHOD</topic><topic>Monte Carlo simulation</topic><topic>Neutral gases</topic><topic>NUMERICAL ANALYSIS</topic><topic>Particle in cell technique</topic><topic>Particle motion</topic><topic>PARTICLES</topic><topic>PASCHEN LAW</topic><topic>PLASMA</topic><topic>Plasmas</topic><topic>SCALING LAWS</topic><topic>TAIL ELECTRONS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, M. U.</creatorcontrib><creatorcontrib>Jeong, S. Y.</creatorcontrib><creatorcontrib>Won, I. H.</creatorcontrib><creatorcontrib>Sung, S. K.</creatorcontrib><creatorcontrib>Yun, G. S.</creatorcontrib><creatorcontrib>Lee, J. K.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Physics of plasmas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, M. U.</au><au>Jeong, S. Y.</au><au>Won, I. H.</au><au>Sung, S. K.</au><au>Yun, G. S.</au><au>Lee, J. K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-Maxwellian to Maxwellian transitions of atmospheric microplasmas at microwave frequencies</atitle><jtitle>Physics of plasmas</jtitle><date>2016-07-01</date><risdate>2016</risdate><volume>23</volume><issue>7</issue><issn>1070-664X</issn><eissn>1089-7674</eissn><coden>PHPAEN</coden><abstract>Particle-in-cell/Monte Carlo simulations and numerical analysis of a single particle motion are performed for atmospheric He microplasmas at microwave frequencies to determine the characteristics of non-Maxwellian to Maxwellian transition. The left and the right regimes of Paschen curve, divided by this transition, reveal that the transition frequencies depend on the gap of electrodes and the neutral gas pressure to follow scaling laws for a new extended Paschen law. The fluid models are reasonable at the right-side regime of Paschen breakdown areas, but not on the left side, which is highly kinetic for electrons. The plasmas driven by weaker electric fields of high enough frequencies at the right-side Paschen regime breed more energetic electrons.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4959857</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-4311-1195</orcidid><orcidid>https://orcid.org/0000-0003-0528-3583</orcidid><orcidid>https://orcid.org/0000-0003-2897-0108</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-664X |
ispartof | Physics of plasmas, 2016-07, Vol.23 (7) |
issn | 1070-664X 1089-7674 |
language | eng |
recordid | cdi_scitation_primary_10_1063_1_4959857 |
source | American Institute of Physics (AIP) Journals; Alma/SFX Local Collection |
subjects | 70 PLASMA PHYSICS AND FUSION TECHNOLOGY Atmospheric models BREAKDOWN Computer simulation COMPUTERIZED SIMULATION ELECTRIC FIELDS ELECTRODES Electrons FLUIDS Gas pressure Microplasmas Microwave frequencies MICROWAVE RADIATION MONTE CARLO METHOD Monte Carlo simulation Neutral gases NUMERICAL ANALYSIS Particle in cell technique Particle motion PARTICLES PASCHEN LAW PLASMA Plasmas SCALING LAWS TAIL ELECTRONS |
title | Non-Maxwellian to Maxwellian transitions of atmospheric microplasmas at microwave frequencies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T20%3A13%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-Maxwellian%20to%20Maxwellian%20transitions%20of%20atmospheric%20microplasmas%20at%20microwave%20frequencies&rft.jtitle=Physics%20of%20plasmas&rft.au=Lee,%20M.%20U.&rft.date=2016-07-01&rft.volume=23&rft.issue=7&rft.issn=1070-664X&rft.eissn=1089-7674&rft.coden=PHPAEN&rft_id=info:doi/10.1063/1.4959857&rft_dat=%3Cproquest_scita%3E2121707361%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2121707361&rft_id=info:pmid/&rfr_iscdi=true |