Non-Maxwellian to Maxwellian transitions of atmospheric microplasmas at microwave frequencies

Particle-in-cell/Monte Carlo simulations and numerical analysis of a single particle motion are performed for atmospheric He microplasmas at microwave frequencies to determine the characteristics of non-Maxwellian to Maxwellian transition. The left and the right regimes of Paschen curve, divided by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of plasmas 2016-07, Vol.23 (7)
Hauptverfasser: Lee, M. U., Jeong, S. Y., Won, I. H., Sung, S. K., Yun, G. S., Lee, J. K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page
container_title Physics of plasmas
container_volume 23
creator Lee, M. U.
Jeong, S. Y.
Won, I. H.
Sung, S. K.
Yun, G. S.
Lee, J. K.
description Particle-in-cell/Monte Carlo simulations and numerical analysis of a single particle motion are performed for atmospheric He microplasmas at microwave frequencies to determine the characteristics of non-Maxwellian to Maxwellian transition. The left and the right regimes of Paschen curve, divided by this transition, reveal that the transition frequencies depend on the gap of electrodes and the neutral gas pressure to follow scaling laws for a new extended Paschen law. The fluid models are reasonable at the right-side regime of Paschen breakdown areas, but not on the left side, which is highly kinetic for electrons. The plasmas driven by weaker electric fields of high enough frequencies at the right-side Paschen regime breed more energetic electrons.
doi_str_mv 10.1063/1.4959857
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_4959857</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2121707361</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-6a0ffeae8637fec7f46d6f4a36c6d284806320136c5de8628e48ce2b0c5c5e6c3</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK4e_AYFTwpdk7RJ26Ms_oNVLwpeJMR0wmbpJjXp7uq3N6WLKwieZh7zY-bNQ-iU4AnBPLskk7xiVcmKPTQiuKzSghf5ft8XOOU8fz1ERyEsMMY5Z-UIvT06mz7Izw00jZE26VzyW3lpg-mMsyFxOpHd0oV2Dt6oZGmUd20jw1KGOBj0Rq4h0R4-VmCVgXCMDrRsApxs6xi93Fw_T-_S2dPt_fRqlqqMsS7lEmsNEkqeFRpUoXNec53LjCte0zIv42cUkyhZHSFaQl4qoO9YMcWAq2yMzoa9LnRGBGU6UHPlrAXVCUpZVVWc7qjWu-gwdGLhVt5GY4ISSgpcZJxE6nyg4j8heNCi9WYp_ZcgWPQZCyK2GUf2YmD7k7LP6QdeO78DRVvr_-C_m78BMe-Lwg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2121707361</pqid></control><display><type>article</type><title>Non-Maxwellian to Maxwellian transitions of atmospheric microplasmas at microwave frequencies</title><source>American Institute of Physics (AIP) Journals</source><source>Alma/SFX Local Collection</source><creator>Lee, M. U. ; Jeong, S. Y. ; Won, I. H. ; Sung, S. K. ; Yun, G. S. ; Lee, J. K.</creator><creatorcontrib>Lee, M. U. ; Jeong, S. Y. ; Won, I. H. ; Sung, S. K. ; Yun, G. S. ; Lee, J. K.</creatorcontrib><description>Particle-in-cell/Monte Carlo simulations and numerical analysis of a single particle motion are performed for atmospheric He microplasmas at microwave frequencies to determine the characteristics of non-Maxwellian to Maxwellian transition. The left and the right regimes of Paschen curve, divided by this transition, reveal that the transition frequencies depend on the gap of electrodes and the neutral gas pressure to follow scaling laws for a new extended Paschen law. The fluid models are reasonable at the right-side regime of Paschen breakdown areas, but not on the left side, which is highly kinetic for electrons. The plasmas driven by weaker electric fields of high enough frequencies at the right-side Paschen regime breed more energetic electrons.</description><identifier>ISSN: 1070-664X</identifier><identifier>EISSN: 1089-7674</identifier><identifier>DOI: 10.1063/1.4959857</identifier><identifier>CODEN: PHPAEN</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; Atmospheric models ; BREAKDOWN ; Computer simulation ; COMPUTERIZED SIMULATION ; ELECTRIC FIELDS ; ELECTRODES ; Electrons ; FLUIDS ; Gas pressure ; Microplasmas ; Microwave frequencies ; MICROWAVE RADIATION ; MONTE CARLO METHOD ; Monte Carlo simulation ; Neutral gases ; NUMERICAL ANALYSIS ; Particle in cell technique ; Particle motion ; PARTICLES ; PASCHEN LAW ; PLASMA ; Plasmas ; SCALING LAWS ; TAIL ELECTRONS</subject><ispartof>Physics of plasmas, 2016-07, Vol.23 (7)</ispartof><rights>Author(s)</rights><rights>2016 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-6a0ffeae8637fec7f46d6f4a36c6d284806320136c5de8628e48ce2b0c5c5e6c3</citedby><cites>FETCH-LOGICAL-c355t-6a0ffeae8637fec7f46d6f4a36c6d284806320136c5de8628e48ce2b0c5c5e6c3</cites><orcidid>0000-0002-4311-1195 ; 0000-0003-0528-3583 ; 0000-0003-2897-0108</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/pop/article-lookup/doi/10.1063/1.4959857$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,776,780,790,881,4497,27903,27904,76131</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22599962$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, M. U.</creatorcontrib><creatorcontrib>Jeong, S. Y.</creatorcontrib><creatorcontrib>Won, I. H.</creatorcontrib><creatorcontrib>Sung, S. K.</creatorcontrib><creatorcontrib>Yun, G. S.</creatorcontrib><creatorcontrib>Lee, J. K.</creatorcontrib><title>Non-Maxwellian to Maxwellian transitions of atmospheric microplasmas at microwave frequencies</title><title>Physics of plasmas</title><description>Particle-in-cell/Monte Carlo simulations and numerical analysis of a single particle motion are performed for atmospheric He microplasmas at microwave frequencies to determine the characteristics of non-Maxwellian to Maxwellian transition. The left and the right regimes of Paschen curve, divided by this transition, reveal that the transition frequencies depend on the gap of electrodes and the neutral gas pressure to follow scaling laws for a new extended Paschen law. The fluid models are reasonable at the right-side regime of Paschen breakdown areas, but not on the left side, which is highly kinetic for electrons. The plasmas driven by weaker electric fields of high enough frequencies at the right-side Paschen regime breed more energetic electrons.</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>Atmospheric models</subject><subject>BREAKDOWN</subject><subject>Computer simulation</subject><subject>COMPUTERIZED SIMULATION</subject><subject>ELECTRIC FIELDS</subject><subject>ELECTRODES</subject><subject>Electrons</subject><subject>FLUIDS</subject><subject>Gas pressure</subject><subject>Microplasmas</subject><subject>Microwave frequencies</subject><subject>MICROWAVE RADIATION</subject><subject>MONTE CARLO METHOD</subject><subject>Monte Carlo simulation</subject><subject>Neutral gases</subject><subject>NUMERICAL ANALYSIS</subject><subject>Particle in cell technique</subject><subject>Particle motion</subject><subject>PARTICLES</subject><subject>PASCHEN LAW</subject><subject>PLASMA</subject><subject>Plasmas</subject><subject>SCALING LAWS</subject><subject>TAIL ELECTRONS</subject><issn>1070-664X</issn><issn>1089-7674</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK4e_AYFTwpdk7RJ26Ms_oNVLwpeJMR0wmbpJjXp7uq3N6WLKwieZh7zY-bNQ-iU4AnBPLskk7xiVcmKPTQiuKzSghf5ft8XOOU8fz1ERyEsMMY5Z-UIvT06mz7Izw00jZE26VzyW3lpg-mMsyFxOpHd0oV2Dt6oZGmUd20jw1KGOBj0Rq4h0R4-VmCVgXCMDrRsApxs6xi93Fw_T-_S2dPt_fRqlqqMsS7lEmsNEkqeFRpUoXNec53LjCte0zIv42cUkyhZHSFaQl4qoO9YMcWAq2yMzoa9LnRGBGU6UHPlrAXVCUpZVVWc7qjWu-gwdGLhVt5GY4ISSgpcZJxE6nyg4j8heNCi9WYp_ZcgWPQZCyK2GUf2YmD7k7LP6QdeO78DRVvr_-C_m78BMe-Lwg</recordid><startdate>20160701</startdate><enddate>20160701</enddate><creator>Lee, M. U.</creator><creator>Jeong, S. Y.</creator><creator>Won, I. H.</creator><creator>Sung, S. K.</creator><creator>Yun, G. S.</creator><creator>Lee, J. K.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-4311-1195</orcidid><orcidid>https://orcid.org/0000-0003-0528-3583</orcidid><orcidid>https://orcid.org/0000-0003-2897-0108</orcidid></search><sort><creationdate>20160701</creationdate><title>Non-Maxwellian to Maxwellian transitions of atmospheric microplasmas at microwave frequencies</title><author>Lee, M. U. ; Jeong, S. Y. ; Won, I. H. ; Sung, S. K. ; Yun, G. S. ; Lee, J. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-6a0ffeae8637fec7f46d6f4a36c6d284806320136c5de8628e48ce2b0c5c5e6c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>Atmospheric models</topic><topic>BREAKDOWN</topic><topic>Computer simulation</topic><topic>COMPUTERIZED SIMULATION</topic><topic>ELECTRIC FIELDS</topic><topic>ELECTRODES</topic><topic>Electrons</topic><topic>FLUIDS</topic><topic>Gas pressure</topic><topic>Microplasmas</topic><topic>Microwave frequencies</topic><topic>MICROWAVE RADIATION</topic><topic>MONTE CARLO METHOD</topic><topic>Monte Carlo simulation</topic><topic>Neutral gases</topic><topic>NUMERICAL ANALYSIS</topic><topic>Particle in cell technique</topic><topic>Particle motion</topic><topic>PARTICLES</topic><topic>PASCHEN LAW</topic><topic>PLASMA</topic><topic>Plasmas</topic><topic>SCALING LAWS</topic><topic>TAIL ELECTRONS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, M. U.</creatorcontrib><creatorcontrib>Jeong, S. Y.</creatorcontrib><creatorcontrib>Won, I. H.</creatorcontrib><creatorcontrib>Sung, S. K.</creatorcontrib><creatorcontrib>Yun, G. S.</creatorcontrib><creatorcontrib>Lee, J. K.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Physics of plasmas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, M. U.</au><au>Jeong, S. Y.</au><au>Won, I. H.</au><au>Sung, S. K.</au><au>Yun, G. S.</au><au>Lee, J. K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-Maxwellian to Maxwellian transitions of atmospheric microplasmas at microwave frequencies</atitle><jtitle>Physics of plasmas</jtitle><date>2016-07-01</date><risdate>2016</risdate><volume>23</volume><issue>7</issue><issn>1070-664X</issn><eissn>1089-7674</eissn><coden>PHPAEN</coden><abstract>Particle-in-cell/Monte Carlo simulations and numerical analysis of a single particle motion are performed for atmospheric He microplasmas at microwave frequencies to determine the characteristics of non-Maxwellian to Maxwellian transition. The left and the right regimes of Paschen curve, divided by this transition, reveal that the transition frequencies depend on the gap of electrodes and the neutral gas pressure to follow scaling laws for a new extended Paschen law. The fluid models are reasonable at the right-side regime of Paschen breakdown areas, but not on the left side, which is highly kinetic for electrons. The plasmas driven by weaker electric fields of high enough frequencies at the right-side Paschen regime breed more energetic electrons.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4959857</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-4311-1195</orcidid><orcidid>https://orcid.org/0000-0003-0528-3583</orcidid><orcidid>https://orcid.org/0000-0003-2897-0108</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1070-664X
ispartof Physics of plasmas, 2016-07, Vol.23 (7)
issn 1070-664X
1089-7674
language eng
recordid cdi_scitation_primary_10_1063_1_4959857
source American Institute of Physics (AIP) Journals; Alma/SFX Local Collection
subjects 70 PLASMA PHYSICS AND FUSION TECHNOLOGY
Atmospheric models
BREAKDOWN
Computer simulation
COMPUTERIZED SIMULATION
ELECTRIC FIELDS
ELECTRODES
Electrons
FLUIDS
Gas pressure
Microplasmas
Microwave frequencies
MICROWAVE RADIATION
MONTE CARLO METHOD
Monte Carlo simulation
Neutral gases
NUMERICAL ANALYSIS
Particle in cell technique
Particle motion
PARTICLES
PASCHEN LAW
PLASMA
Plasmas
SCALING LAWS
TAIL ELECTRONS
title Non-Maxwellian to Maxwellian transitions of atmospheric microplasmas at microwave frequencies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T20%3A13%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-Maxwellian%20to%20Maxwellian%20transitions%20of%20atmospheric%20microplasmas%20at%20microwave%20frequencies&rft.jtitle=Physics%20of%20plasmas&rft.au=Lee,%20M.%20U.&rft.date=2016-07-01&rft.volume=23&rft.issue=7&rft.issn=1070-664X&rft.eissn=1089-7674&rft.coden=PHPAEN&rft_id=info:doi/10.1063/1.4959857&rft_dat=%3Cproquest_scita%3E2121707361%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2121707361&rft_id=info:pmid/&rfr_iscdi=true