Optimal control problem for the three-sector economic model of a cluster

The problem of optimal control for the three-sector economic model of a cluster is considered. Task statement is to determine the optimal distribution of investment and manpower in moving the system from a given initial state to desired final state. To solve the optimal control problem with finite-h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Murzabekov, Zainel, Aipanov, Shamshi, Usubalieva, Saltanat
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 1759
creator Murzabekov, Zainel
Aipanov, Shamshi
Usubalieva, Saltanat
description The problem of optimal control for the three-sector economic model of a cluster is considered. Task statement is to determine the optimal distribution of investment and manpower in moving the system from a given initial state to desired final state. To solve the optimal control problem with finite-horizon planning, in case of fixed ends of trajectories, with box constraints, the method of Lagrange multipliers of a special type is used. This approach allows to represent the desired control in the form of synthesis control, depending on state of the system and current time. The results of numerical calculations for an instance of three-sector model of the economy show the effectiveness of the proposed method.
doi_str_mv 10.1063/1.4959711
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_4959711</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2121695483</sourcerecordid><originalsourceid>FETCH-LOGICAL-p253t-49ef0cc7def56e137d127efbc3d31b0057b7553d2d086f1c7f904c1a4195e5453</originalsourceid><addsrcrecordid>eNp9kEFLAzEQhYMoWKsH_0HAm7A1s0k2zVGKWqHQi4K3sJtMcMtusyap4L83YsGbh-HB8PFm3iPkGtgCWMPvYCG01ArghMxASqhUA80pmTGmRVUL_nZOLlLaMVZrpZYzst5OuR_bgdqwzzEMdIqhG3CkPkSa37FMRKwS2lwWWKgw9paOweFAg6cttcMhZYyX5My3Q8Kro87J6-PDy2pdbbZPz6v7TTXVkudKaPTMWuXQywaBKwe1Qt9Z7jh0jEnVKSm5qx1bNh6s8poJC60ALVEKyefk5te3PPpxwJTNLhzivpw0NdTQaCmWvFC3v1SyfW5zH_ZmiiVn_DLAzE9TBsyxqf_gzxD_QDM5z78BTOtpIw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2121695483</pqid></control><display><type>conference_proceeding</type><title>Optimal control problem for the three-sector economic model of a cluster</title><source>AIP Journals Complete</source><creator>Murzabekov, Zainel ; Aipanov, Shamshi ; Usubalieva, Saltanat</creator><contributor>Ashyralyev, Allaberen ; Lukashov, Alexey</contributor><creatorcontrib>Murzabekov, Zainel ; Aipanov, Shamshi ; Usubalieva, Saltanat ; Ashyralyev, Allaberen ; Lukashov, Alexey</creatorcontrib><description>The problem of optimal control for the three-sector economic model of a cluster is considered. Task statement is to determine the optimal distribution of investment and manpower in moving the system from a given initial state to desired final state. To solve the optimal control problem with finite-horizon planning, in case of fixed ends of trajectories, with box constraints, the method of Lagrange multipliers of a special type is used. This approach allows to represent the desired control in the form of synthesis control, depending on state of the system and current time. The results of numerical calculations for an instance of three-sector model of the economy show the effectiveness of the proposed method.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.4959711</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Clusters ; Economic analysis ; Economic models ; Lagrange multiplier ; Manpower ; Mathematical models ; Optimal control</subject><ispartof>AIP conference proceedings, 2016, Vol.1759 (1)</ispartof><rights>Author(s)</rights><rights>2016 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/1.4959711$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,777,781,786,787,791,4498,23911,23912,25121,27905,27906,76133</link.rule.ids></links><search><contributor>Ashyralyev, Allaberen</contributor><contributor>Lukashov, Alexey</contributor><creatorcontrib>Murzabekov, Zainel</creatorcontrib><creatorcontrib>Aipanov, Shamshi</creatorcontrib><creatorcontrib>Usubalieva, Saltanat</creatorcontrib><title>Optimal control problem for the three-sector economic model of a cluster</title><title>AIP conference proceedings</title><description>The problem of optimal control for the three-sector economic model of a cluster is considered. Task statement is to determine the optimal distribution of investment and manpower in moving the system from a given initial state to desired final state. To solve the optimal control problem with finite-horizon planning, in case of fixed ends of trajectories, with box constraints, the method of Lagrange multipliers of a special type is used. This approach allows to represent the desired control in the form of synthesis control, depending on state of the system and current time. The results of numerical calculations for an instance of three-sector model of the economy show the effectiveness of the proposed method.</description><subject>Clusters</subject><subject>Economic analysis</subject><subject>Economic models</subject><subject>Lagrange multiplier</subject><subject>Manpower</subject><subject>Mathematical models</subject><subject>Optimal control</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2016</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kEFLAzEQhYMoWKsH_0HAm7A1s0k2zVGKWqHQi4K3sJtMcMtusyap4L83YsGbh-HB8PFm3iPkGtgCWMPvYCG01ArghMxASqhUA80pmTGmRVUL_nZOLlLaMVZrpZYzst5OuR_bgdqwzzEMdIqhG3CkPkSa37FMRKwS2lwWWKgw9paOweFAg6cttcMhZYyX5My3Q8Kro87J6-PDy2pdbbZPz6v7TTXVkudKaPTMWuXQywaBKwe1Qt9Z7jh0jEnVKSm5qx1bNh6s8poJC60ALVEKyefk5te3PPpxwJTNLhzivpw0NdTQaCmWvFC3v1SyfW5zH_ZmiiVn_DLAzE9TBsyxqf_gzxD_QDM5z78BTOtpIw</recordid><startdate>20160810</startdate><enddate>20160810</enddate><creator>Murzabekov, Zainel</creator><creator>Aipanov, Shamshi</creator><creator>Usubalieva, Saltanat</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20160810</creationdate><title>Optimal control problem for the three-sector economic model of a cluster</title><author>Murzabekov, Zainel ; Aipanov, Shamshi ; Usubalieva, Saltanat</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p253t-49ef0cc7def56e137d127efbc3d31b0057b7553d2d086f1c7f904c1a4195e5453</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Clusters</topic><topic>Economic analysis</topic><topic>Economic models</topic><topic>Lagrange multiplier</topic><topic>Manpower</topic><topic>Mathematical models</topic><topic>Optimal control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Murzabekov, Zainel</creatorcontrib><creatorcontrib>Aipanov, Shamshi</creatorcontrib><creatorcontrib>Usubalieva, Saltanat</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Murzabekov, Zainel</au><au>Aipanov, Shamshi</au><au>Usubalieva, Saltanat</au><au>Ashyralyev, Allaberen</au><au>Lukashov, Alexey</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Optimal control problem for the three-sector economic model of a cluster</atitle><btitle>AIP conference proceedings</btitle><date>2016-08-10</date><risdate>2016</risdate><volume>1759</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>The problem of optimal control for the three-sector economic model of a cluster is considered. Task statement is to determine the optimal distribution of investment and manpower in moving the system from a given initial state to desired final state. To solve the optimal control problem with finite-horizon planning, in case of fixed ends of trajectories, with box constraints, the method of Lagrange multipliers of a special type is used. This approach allows to represent the desired control in the form of synthesis control, depending on state of the system and current time. The results of numerical calculations for an instance of three-sector model of the economy show the effectiveness of the proposed method.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4959711</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2016, Vol.1759 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_scitation_primary_10_1063_1_4959711
source AIP Journals Complete
subjects Clusters
Economic analysis
Economic models
Lagrange multiplier
Manpower
Mathematical models
Optimal control
title Optimal control problem for the three-sector economic model of a cluster
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T04%3A56%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Optimal%20control%20problem%20for%20the%20three-sector%20economic%20model%20of%20a%20cluster&rft.btitle=AIP%20conference%20proceedings&rft.au=Murzabekov,%20Zainel&rft.date=2016-08-10&rft.volume=1759&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/1.4959711&rft_dat=%3Cproquest_scita%3E2121695483%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2121695483&rft_id=info:pmid/&rfr_iscdi=true