Optimal control problem for the three-sector economic model of a cluster
The problem of optimal control for the three-sector economic model of a cluster is considered. Task statement is to determine the optimal distribution of investment and manpower in moving the system from a given initial state to desired final state. To solve the optimal control problem with finite-h...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 1759 |
creator | Murzabekov, Zainel Aipanov, Shamshi Usubalieva, Saltanat |
description | The problem of optimal control for the three-sector economic model of a cluster is considered. Task statement is to determine the optimal distribution of investment and manpower in moving the system from a given initial state to desired final state. To solve the optimal control problem with finite-horizon planning, in case of fixed ends of trajectories, with box constraints, the method of Lagrange multipliers of a special type is used. This approach allows to represent the desired control in the form of synthesis control, depending on state of the system and current time. The results of numerical calculations for an instance of three-sector model of the economy show the effectiveness of the proposed method. |
doi_str_mv | 10.1063/1.4959711 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_4959711</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2121695483</sourcerecordid><originalsourceid>FETCH-LOGICAL-p253t-49ef0cc7def56e137d127efbc3d31b0057b7553d2d086f1c7f904c1a4195e5453</originalsourceid><addsrcrecordid>eNp9kEFLAzEQhYMoWKsH_0HAm7A1s0k2zVGKWqHQi4K3sJtMcMtusyap4L83YsGbh-HB8PFm3iPkGtgCWMPvYCG01ArghMxASqhUA80pmTGmRVUL_nZOLlLaMVZrpZYzst5OuR_bgdqwzzEMdIqhG3CkPkSa37FMRKwS2lwWWKgw9paOweFAg6cttcMhZYyX5My3Q8Kro87J6-PDy2pdbbZPz6v7TTXVkudKaPTMWuXQywaBKwe1Qt9Z7jh0jEnVKSm5qx1bNh6s8poJC60ALVEKyefk5te3PPpxwJTNLhzivpw0NdTQaCmWvFC3v1SyfW5zH_ZmiiVn_DLAzE9TBsyxqf_gzxD_QDM5z78BTOtpIw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2121695483</pqid></control><display><type>conference_proceeding</type><title>Optimal control problem for the three-sector economic model of a cluster</title><source>AIP Journals Complete</source><creator>Murzabekov, Zainel ; Aipanov, Shamshi ; Usubalieva, Saltanat</creator><contributor>Ashyralyev, Allaberen ; Lukashov, Alexey</contributor><creatorcontrib>Murzabekov, Zainel ; Aipanov, Shamshi ; Usubalieva, Saltanat ; Ashyralyev, Allaberen ; Lukashov, Alexey</creatorcontrib><description>The problem of optimal control for the three-sector economic model of a cluster is considered. Task statement is to determine the optimal distribution of investment and manpower in moving the system from a given initial state to desired final state. To solve the optimal control problem with finite-horizon planning, in case of fixed ends of trajectories, with box constraints, the method of Lagrange multipliers of a special type is used. This approach allows to represent the desired control in the form of synthesis control, depending on state of the system and current time. The results of numerical calculations for an instance of three-sector model of the economy show the effectiveness of the proposed method.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.4959711</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Clusters ; Economic analysis ; Economic models ; Lagrange multiplier ; Manpower ; Mathematical models ; Optimal control</subject><ispartof>AIP conference proceedings, 2016, Vol.1759 (1)</ispartof><rights>Author(s)</rights><rights>2016 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/1.4959711$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,777,781,786,787,791,4498,23911,23912,25121,27905,27906,76133</link.rule.ids></links><search><contributor>Ashyralyev, Allaberen</contributor><contributor>Lukashov, Alexey</contributor><creatorcontrib>Murzabekov, Zainel</creatorcontrib><creatorcontrib>Aipanov, Shamshi</creatorcontrib><creatorcontrib>Usubalieva, Saltanat</creatorcontrib><title>Optimal control problem for the three-sector economic model of a cluster</title><title>AIP conference proceedings</title><description>The problem of optimal control for the three-sector economic model of a cluster is considered. Task statement is to determine the optimal distribution of investment and manpower in moving the system from a given initial state to desired final state. To solve the optimal control problem with finite-horizon planning, in case of fixed ends of trajectories, with box constraints, the method of Lagrange multipliers of a special type is used. This approach allows to represent the desired control in the form of synthesis control, depending on state of the system and current time. The results of numerical calculations for an instance of three-sector model of the economy show the effectiveness of the proposed method.</description><subject>Clusters</subject><subject>Economic analysis</subject><subject>Economic models</subject><subject>Lagrange multiplier</subject><subject>Manpower</subject><subject>Mathematical models</subject><subject>Optimal control</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2016</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kEFLAzEQhYMoWKsH_0HAm7A1s0k2zVGKWqHQi4K3sJtMcMtusyap4L83YsGbh-HB8PFm3iPkGtgCWMPvYCG01ArghMxASqhUA80pmTGmRVUL_nZOLlLaMVZrpZYzst5OuR_bgdqwzzEMdIqhG3CkPkSa37FMRKwS2lwWWKgw9paOweFAg6cttcMhZYyX5My3Q8Kro87J6-PDy2pdbbZPz6v7TTXVkudKaPTMWuXQywaBKwe1Qt9Z7jh0jEnVKSm5qx1bNh6s8poJC60ALVEKyefk5te3PPpxwJTNLhzivpw0NdTQaCmWvFC3v1SyfW5zH_ZmiiVn_DLAzE9TBsyxqf_gzxD_QDM5z78BTOtpIw</recordid><startdate>20160810</startdate><enddate>20160810</enddate><creator>Murzabekov, Zainel</creator><creator>Aipanov, Shamshi</creator><creator>Usubalieva, Saltanat</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20160810</creationdate><title>Optimal control problem for the three-sector economic model of a cluster</title><author>Murzabekov, Zainel ; Aipanov, Shamshi ; Usubalieva, Saltanat</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p253t-49ef0cc7def56e137d127efbc3d31b0057b7553d2d086f1c7f904c1a4195e5453</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Clusters</topic><topic>Economic analysis</topic><topic>Economic models</topic><topic>Lagrange multiplier</topic><topic>Manpower</topic><topic>Mathematical models</topic><topic>Optimal control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Murzabekov, Zainel</creatorcontrib><creatorcontrib>Aipanov, Shamshi</creatorcontrib><creatorcontrib>Usubalieva, Saltanat</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Murzabekov, Zainel</au><au>Aipanov, Shamshi</au><au>Usubalieva, Saltanat</au><au>Ashyralyev, Allaberen</au><au>Lukashov, Alexey</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Optimal control problem for the three-sector economic model of a cluster</atitle><btitle>AIP conference proceedings</btitle><date>2016-08-10</date><risdate>2016</risdate><volume>1759</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>The problem of optimal control for the three-sector economic model of a cluster is considered. Task statement is to determine the optimal distribution of investment and manpower in moving the system from a given initial state to desired final state. To solve the optimal control problem with finite-horizon planning, in case of fixed ends of trajectories, with box constraints, the method of Lagrange multipliers of a special type is used. This approach allows to represent the desired control in the form of synthesis control, depending on state of the system and current time. The results of numerical calculations for an instance of three-sector model of the economy show the effectiveness of the proposed method.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4959711</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2016, Vol.1759 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_scitation_primary_10_1063_1_4959711 |
source | AIP Journals Complete |
subjects | Clusters Economic analysis Economic models Lagrange multiplier Manpower Mathematical models Optimal control |
title | Optimal control problem for the three-sector economic model of a cluster |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T04%3A56%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Optimal%20control%20problem%20for%20the%20three-sector%20economic%20model%20of%20a%20cluster&rft.btitle=AIP%20conference%20proceedings&rft.au=Murzabekov,%20Zainel&rft.date=2016-08-10&rft.volume=1759&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/1.4959711&rft_dat=%3Cproquest_scita%3E2121695483%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2121695483&rft_id=info:pmid/&rfr_iscdi=true |