Estimation parameters using Bisquare weighted robust ridge regression BRLTS estimator in the presence of multicollinearity and outliers

This study presents an improvement to robust ridge regression estimator. We proposed two methods Bisquare ridge least trimmed squares (BRLTS) and Bisquare ridge least absolute value (BRLAV) based on ridge least trimmed squares (RLTS) and ridge least absolute value (RLAV), respectively. We compared t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Pati, Kafi Dano, Adnan, Robiah, Rasheed, Bello Abdulkadir, MD. J., Muhammad Alias
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 1750
creator Pati, Kafi Dano
Adnan, Robiah
Rasheed, Bello Abdulkadir
MD. J., Muhammad Alias
description This study presents an improvement to robust ridge regression estimator. We proposed two methods Bisquare ridge least trimmed squares (BRLTS) and Bisquare ridge least absolute value (BRLAV) based on ridge least trimmed squares (RLTS) and ridge least absolute value (RLAV), respectively. We compared these methods with existing estimators, namely ordinary least squares (OLS) and Huber ridge regression (HRID) using three criteria: Bias, Root Mean Square Error (RMSE) and Standard Error (SE) to estimate the parameters coefficients. The results of Bisquare ridge least trimmed squares (BRLTS) and Bisquare ridge least absolute value (BRLAV) are compared with existing methods using real data and simulation study. The empirical evidence shows that the results obtain from the BRLTS are the best among the three estimators followed by BRLAV with the least value of the RMSE for the different disturbance distributions and degrees of multicollinearity.
doi_str_mv 10.1063/1.4954633
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_4954633</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2121720483</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-f165c39bef09727bc17ef38e52cde4f602edf5139b19d24548074f149601446c3</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWKsL3yDgTpiav0lmlrbUHygIWsFdmM7ctCnTyTTJKH0CX9upLbhzdRf3u-fccxC6pmREieR3dCTyVEjOT9CApilNlKTyFA0IyUXCBP84RxchrAlhuVLZAH1PQ7SbIlrX4LbwxQYi-IC7YJslHtuw7QoP-AvschWhwt4tuhCxt9USsIelhxD2p-PX2fwNw0HLeWwbHFeA234PTQnYGbzp6mhLV9e2gcLbuMNFU2HXxdr2jpfozBR1gKvjHKL3h-l88pTMXh6fJ_ezpOQsi4mhMi15vgBDcsXUoqQKDM8gZWUFwkjCoDIp7QmaV0ykIiNKGCpySagQsuRDdHPQbb3bdv3Deu063_SWmlFGFSMi4z11e6BCaeNvObr1fTS_05TofdGa6mPR_8Gfzv-Buq0M_wHP5YFA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2121720483</pqid></control><display><type>conference_proceeding</type><title>Estimation parameters using Bisquare weighted robust ridge regression BRLTS estimator in the presence of multicollinearity and outliers</title><source>AIP Journals Complete</source><creator>Pati, Kafi Dano ; Adnan, Robiah ; Rasheed, Bello Abdulkadir ; MD. J., Muhammad Alias</creator><contributor>Salleh, Shaharuddin ; Zainuddin, Zaitul Marlizawati ; Yusof, Yudariah Mohammad ; Aris, Nor’aini ; Lee, Muhammad Hisyam ; Bahar, Arifah ; Ahmad, Tahir ; Maan, Normah</contributor><creatorcontrib>Pati, Kafi Dano ; Adnan, Robiah ; Rasheed, Bello Abdulkadir ; MD. J., Muhammad Alias ; Salleh, Shaharuddin ; Zainuddin, Zaitul Marlizawati ; Yusof, Yudariah Mohammad ; Aris, Nor’aini ; Lee, Muhammad Hisyam ; Bahar, Arifah ; Ahmad, Tahir ; Maan, Normah</creatorcontrib><description>This study presents an improvement to robust ridge regression estimator. We proposed two methods Bisquare ridge least trimmed squares (BRLTS) and Bisquare ridge least absolute value (BRLAV) based on ridge least trimmed squares (RLTS) and ridge least absolute value (RLAV), respectively. We compared these methods with existing estimators, namely ordinary least squares (OLS) and Huber ridge regression (HRID) using three criteria: Bias, Root Mean Square Error (RMSE) and Standard Error (SE) to estimate the parameters coefficients. The results of Bisquare ridge least trimmed squares (BRLTS) and Bisquare ridge least absolute value (BRLAV) are compared with existing methods using real data and simulation study. The empirical evidence shows that the results obtain from the BRLTS are the best among the three estimators followed by BRLAV with the least value of the RMSE for the different disturbance distributions and degrees of multicollinearity.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.4954633</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Economic models ; Estimators ; Outliers (statistics) ; Parameter estimation ; Parameter robustness ; Regression ; Regression analysis ; Robustness (mathematics) ; Root-mean-square errors ; Standard error</subject><ispartof>AIP conference proceedings, 2016, Vol.1750 (1)</ispartof><rights>Author(s)</rights><rights>2016 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-f165c39bef09727bc17ef38e52cde4f602edf5139b19d24548074f149601446c3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/1.4954633$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,790,4498,23909,23910,25118,27901,27902,76126</link.rule.ids></links><search><contributor>Salleh, Shaharuddin</contributor><contributor>Zainuddin, Zaitul Marlizawati</contributor><contributor>Yusof, Yudariah Mohammad</contributor><contributor>Aris, Nor’aini</contributor><contributor>Lee, Muhammad Hisyam</contributor><contributor>Bahar, Arifah</contributor><contributor>Ahmad, Tahir</contributor><contributor>Maan, Normah</contributor><creatorcontrib>Pati, Kafi Dano</creatorcontrib><creatorcontrib>Adnan, Robiah</creatorcontrib><creatorcontrib>Rasheed, Bello Abdulkadir</creatorcontrib><creatorcontrib>MD. J., Muhammad Alias</creatorcontrib><title>Estimation parameters using Bisquare weighted robust ridge regression BRLTS estimator in the presence of multicollinearity and outliers</title><title>AIP conference proceedings</title><description>This study presents an improvement to robust ridge regression estimator. We proposed two methods Bisquare ridge least trimmed squares (BRLTS) and Bisquare ridge least absolute value (BRLAV) based on ridge least trimmed squares (RLTS) and ridge least absolute value (RLAV), respectively. We compared these methods with existing estimators, namely ordinary least squares (OLS) and Huber ridge regression (HRID) using three criteria: Bias, Root Mean Square Error (RMSE) and Standard Error (SE) to estimate the parameters coefficients. The results of Bisquare ridge least trimmed squares (BRLTS) and Bisquare ridge least absolute value (BRLAV) are compared with existing methods using real data and simulation study. The empirical evidence shows that the results obtain from the BRLTS are the best among the three estimators followed by BRLAV with the least value of the RMSE for the different disturbance distributions and degrees of multicollinearity.</description><subject>Economic models</subject><subject>Estimators</subject><subject>Outliers (statistics)</subject><subject>Parameter estimation</subject><subject>Parameter robustness</subject><subject>Regression</subject><subject>Regression analysis</subject><subject>Robustness (mathematics)</subject><subject>Root-mean-square errors</subject><subject>Standard error</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2016</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kM1KAzEUhYMoWKsL3yDgTpiav0lmlrbUHygIWsFdmM7ctCnTyTTJKH0CX9upLbhzdRf3u-fccxC6pmREieR3dCTyVEjOT9CApilNlKTyFA0IyUXCBP84RxchrAlhuVLZAH1PQ7SbIlrX4LbwxQYi-IC7YJslHtuw7QoP-AvschWhwt4tuhCxt9USsIelhxD2p-PX2fwNw0HLeWwbHFeA234PTQnYGbzp6mhLV9e2gcLbuMNFU2HXxdr2jpfozBR1gKvjHKL3h-l88pTMXh6fJ_ezpOQsi4mhMi15vgBDcsXUoqQKDM8gZWUFwkjCoDIp7QmaV0ykIiNKGCpySagQsuRDdHPQbb3bdv3Deu063_SWmlFGFSMi4z11e6BCaeNvObr1fTS_05TofdGa6mPR_8Gfzv-Buq0M_wHP5YFA</recordid><startdate>20160621</startdate><enddate>20160621</enddate><creator>Pati, Kafi Dano</creator><creator>Adnan, Robiah</creator><creator>Rasheed, Bello Abdulkadir</creator><creator>MD. J., Muhammad Alias</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20160621</creationdate><title>Estimation parameters using Bisquare weighted robust ridge regression BRLTS estimator in the presence of multicollinearity and outliers</title><author>Pati, Kafi Dano ; Adnan, Robiah ; Rasheed, Bello Abdulkadir ; MD. J., Muhammad Alias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-f165c39bef09727bc17ef38e52cde4f602edf5139b19d24548074f149601446c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Economic models</topic><topic>Estimators</topic><topic>Outliers (statistics)</topic><topic>Parameter estimation</topic><topic>Parameter robustness</topic><topic>Regression</topic><topic>Regression analysis</topic><topic>Robustness (mathematics)</topic><topic>Root-mean-square errors</topic><topic>Standard error</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pati, Kafi Dano</creatorcontrib><creatorcontrib>Adnan, Robiah</creatorcontrib><creatorcontrib>Rasheed, Bello Abdulkadir</creatorcontrib><creatorcontrib>MD. J., Muhammad Alias</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pati, Kafi Dano</au><au>Adnan, Robiah</au><au>Rasheed, Bello Abdulkadir</au><au>MD. J., Muhammad Alias</au><au>Salleh, Shaharuddin</au><au>Zainuddin, Zaitul Marlizawati</au><au>Yusof, Yudariah Mohammad</au><au>Aris, Nor’aini</au><au>Lee, Muhammad Hisyam</au><au>Bahar, Arifah</au><au>Ahmad, Tahir</au><au>Maan, Normah</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Estimation parameters using Bisquare weighted robust ridge regression BRLTS estimator in the presence of multicollinearity and outliers</atitle><btitle>AIP conference proceedings</btitle><date>2016-06-21</date><risdate>2016</risdate><volume>1750</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>This study presents an improvement to robust ridge regression estimator. We proposed two methods Bisquare ridge least trimmed squares (BRLTS) and Bisquare ridge least absolute value (BRLAV) based on ridge least trimmed squares (RLTS) and ridge least absolute value (RLAV), respectively. We compared these methods with existing estimators, namely ordinary least squares (OLS) and Huber ridge regression (HRID) using three criteria: Bias, Root Mean Square Error (RMSE) and Standard Error (SE) to estimate the parameters coefficients. The results of Bisquare ridge least trimmed squares (BRLTS) and Bisquare ridge least absolute value (BRLAV) are compared with existing methods using real data and simulation study. The empirical evidence shows that the results obtain from the BRLTS are the best among the three estimators followed by BRLAV with the least value of the RMSE for the different disturbance distributions and degrees of multicollinearity.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4954633</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2016, Vol.1750 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_scitation_primary_10_1063_1_4954633
source AIP Journals Complete
subjects Economic models
Estimators
Outliers (statistics)
Parameter estimation
Parameter robustness
Regression
Regression analysis
Robustness (mathematics)
Root-mean-square errors
Standard error
title Estimation parameters using Bisquare weighted robust ridge regression BRLTS estimator in the presence of multicollinearity and outliers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T23%3A39%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Estimation%20parameters%20using%20Bisquare%20weighted%20robust%20ridge%20regression%20BRLTS%20estimator%20in%20the%20presence%20of%20multicollinearity%20and%20outliers&rft.btitle=AIP%20conference%20proceedings&rft.au=Pati,%20Kafi%20Dano&rft.date=2016-06-21&rft.volume=1750&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/1.4954633&rft_dat=%3Cproquest_scita%3E2121720483%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2121720483&rft_id=info:pmid/&rfr_iscdi=true