Is organic photovoltaics promising for indoor applications?
This work utilizes organic photovoltaics (OPV) for indoor applications, such as powering small electronic devices or wireless connected Internet of Things. Three representative polymer-based OPV systems, namely, poly(3-hexylthiophene-2,5-diyl), poly[N-9′-heptadecanyl-2,7-carbazole-alt-5,5-(4′,7′-di-...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2016-06, Vol.108 (25) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 25 |
container_start_page | |
container_title | Applied physics letters |
container_volume | 108 |
creator | Lee, Harrison K. H. Li, Zhe Durrant, James R. Tsoi, Wing C. |
description | This work utilizes organic photovoltaics (OPV) for indoor applications, such as powering small electronic devices or wireless connected Internet of Things. Three representative polymer-based OPV systems, namely, poly(3-hexylthiophene-2,5-diyl), poly[N-9′-heptadecanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole)], and poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl]], were selected as the donor materials in blend with fullerene derivatives for comparison under low light level condition using fluorescent lamps. PCDTBT based devices are found to be the best performing system, generating 13.9 μW/cm2 corresponding to 16.6% power conversion efficiency at 300 lx, although PTB7 based devices show the highest efficiency under one sun conditions. This high performance suggests that OPV is competitive to the other PV technologies under low light condition despite much lower performance under one sun condition. Different properties of these devices are studied to explain the competitive performance at low light level. A low energy consuming method for maximum power point tracking is introduced for the operation of the OPV devices. Finally, a 14 cm × 14 cm OPV module with 100 cm2 active area is demonstrated for real applications. These findings suggest that OPV, in particular, PCDTBT based devices, could be a promising candidate for indoor applications. |
doi_str_mv | 10.1063/1.4954268 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_4954268</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2121738884</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-750ed8985d09fc9ef05a3bbc16fe6b5347439c1f1408a3a65d2785cf840bde13</originalsourceid><addsrcrecordid>eNqd0MtKAzEUBuAgCtbqwjcYcKUwNSeXmQQXIsVLoeCm-5DJJG1KOxmTtODbO7UF964OBz7O5UfoFvAEcEUfYcIkZ6QSZ2gEuK5LCiDO0QhjTMtKcrhEVymth5YTSkfoaZaKEJe686boVyGHfdhk7U0q-hi2PvluWbgQC9-1YSi67zfe6OxDl56v0YXTm2RvTnWMFm-vi-lHOf98n01f5qVhvMplzbFthRS8xdIZaR3mmjaNgcrZquGU1YxKAw4YFprqirekFtw4wXDTWqBjdHccG1L2KhmfrVmZ0HXWZEUIl1gQ-aeGu792NmW1DrvYDXcpAgRqKoRgg7o_KhNDStE61Ue_1fFbAVaHABWoU4CDfTjaw8rfl_-H9yH-QdW3jv4ALJh9kQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2121738884</pqid></control><display><type>article</type><title>Is organic photovoltaics promising for indoor applications?</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Lee, Harrison K. H. ; Li, Zhe ; Durrant, James R. ; Tsoi, Wing C.</creator><creatorcontrib>Lee, Harrison K. H. ; Li, Zhe ; Durrant, James R. ; Tsoi, Wing C.</creatorcontrib><description>This work utilizes organic photovoltaics (OPV) for indoor applications, such as powering small electronic devices or wireless connected Internet of Things. Three representative polymer-based OPV systems, namely, poly(3-hexylthiophene-2,5-diyl), poly[N-9′-heptadecanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole)], and poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl]], were selected as the donor materials in blend with fullerene derivatives for comparison under low light level condition using fluorescent lamps. PCDTBT based devices are found to be the best performing system, generating 13.9 μW/cm2 corresponding to 16.6% power conversion efficiency at 300 lx, although PTB7 based devices show the highest efficiency under one sun conditions. This high performance suggests that OPV is competitive to the other PV technologies under low light condition despite much lower performance under one sun condition. Different properties of these devices are studied to explain the competitive performance at low light level. A low energy consuming method for maximum power point tracking is introduced for the operation of the OPV devices. Finally, a 14 cm × 14 cm OPV module with 100 cm2 active area is demonstrated for real applications. These findings suggest that OPV, in particular, PCDTBT based devices, could be a promising candidate for indoor applications.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.4954268</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Carbazoles ; Carbonyls ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Donor materials ; EFFICIENCY ; Electronic devices ; ELECTRONIC EQUIPMENT ; Energy conversion efficiency ; FLUORESCENCE ; FLUORESCENT LAMPS ; FULLERENES ; Levels ; Low light level ; MATERIALS ; Maximum power tracking ; Photovoltaic cells ; PHOTOVOLTAIC EFFECT ; POLYMERS ; Power consumption ; Solar cells ; Wireless communications</subject><ispartof>Applied physics letters, 2016-06, Vol.108 (25)</ispartof><rights>Author(s)</rights><rights>2016 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-750ed8985d09fc9ef05a3bbc16fe6b5347439c1f1408a3a65d2785cf840bde13</citedby><cites>FETCH-LOGICAL-c456t-750ed8985d09fc9ef05a3bbc16fe6b5347439c1f1408a3a65d2785cf840bde13</cites><orcidid>0000-0003-3836-5139</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/1.4954268$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,777,781,791,882,4498,27905,27906,76133</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22590829$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Harrison K. H.</creatorcontrib><creatorcontrib>Li, Zhe</creatorcontrib><creatorcontrib>Durrant, James R.</creatorcontrib><creatorcontrib>Tsoi, Wing C.</creatorcontrib><title>Is organic photovoltaics promising for indoor applications?</title><title>Applied physics letters</title><description>This work utilizes organic photovoltaics (OPV) for indoor applications, such as powering small electronic devices or wireless connected Internet of Things. Three representative polymer-based OPV systems, namely, poly(3-hexylthiophene-2,5-diyl), poly[N-9′-heptadecanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole)], and poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl]], were selected as the donor materials in blend with fullerene derivatives for comparison under low light level condition using fluorescent lamps. PCDTBT based devices are found to be the best performing system, generating 13.9 μW/cm2 corresponding to 16.6% power conversion efficiency at 300 lx, although PTB7 based devices show the highest efficiency under one sun conditions. This high performance suggests that OPV is competitive to the other PV technologies under low light condition despite much lower performance under one sun condition. Different properties of these devices are studied to explain the competitive performance at low light level. A low energy consuming method for maximum power point tracking is introduced for the operation of the OPV devices. Finally, a 14 cm × 14 cm OPV module with 100 cm2 active area is demonstrated for real applications. These findings suggest that OPV, in particular, PCDTBT based devices, could be a promising candidate for indoor applications.</description><subject>Applied physics</subject><subject>Carbazoles</subject><subject>Carbonyls</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Donor materials</subject><subject>EFFICIENCY</subject><subject>Electronic devices</subject><subject>ELECTRONIC EQUIPMENT</subject><subject>Energy conversion efficiency</subject><subject>FLUORESCENCE</subject><subject>FLUORESCENT LAMPS</subject><subject>FULLERENES</subject><subject>Levels</subject><subject>Low light level</subject><subject>MATERIALS</subject><subject>Maximum power tracking</subject><subject>Photovoltaic cells</subject><subject>PHOTOVOLTAIC EFFECT</subject><subject>POLYMERS</subject><subject>Power consumption</subject><subject>Solar cells</subject><subject>Wireless communications</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqd0MtKAzEUBuAgCtbqwjcYcKUwNSeXmQQXIsVLoeCm-5DJJG1KOxmTtODbO7UF964OBz7O5UfoFvAEcEUfYcIkZ6QSZ2gEuK5LCiDO0QhjTMtKcrhEVymth5YTSkfoaZaKEJe686boVyGHfdhk7U0q-hi2PvluWbgQC9-1YSi67zfe6OxDl56v0YXTm2RvTnWMFm-vi-lHOf98n01f5qVhvMplzbFthRS8xdIZaR3mmjaNgcrZquGU1YxKAw4YFprqirekFtw4wXDTWqBjdHccG1L2KhmfrVmZ0HXWZEUIl1gQ-aeGu792NmW1DrvYDXcpAgRqKoRgg7o_KhNDStE61Ue_1fFbAVaHABWoU4CDfTjaw8rfl_-H9yH-QdW3jv4ALJh9kQ</recordid><startdate>20160620</startdate><enddate>20160620</enddate><creator>Lee, Harrison K. H.</creator><creator>Li, Zhe</creator><creator>Durrant, James R.</creator><creator>Tsoi, Wing C.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-3836-5139</orcidid></search><sort><creationdate>20160620</creationdate><title>Is organic photovoltaics promising for indoor applications?</title><author>Lee, Harrison K. H. ; Li, Zhe ; Durrant, James R. ; Tsoi, Wing C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-750ed8985d09fc9ef05a3bbc16fe6b5347439c1f1408a3a65d2785cf840bde13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Applied physics</topic><topic>Carbazoles</topic><topic>Carbonyls</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Donor materials</topic><topic>EFFICIENCY</topic><topic>Electronic devices</topic><topic>ELECTRONIC EQUIPMENT</topic><topic>Energy conversion efficiency</topic><topic>FLUORESCENCE</topic><topic>FLUORESCENT LAMPS</topic><topic>FULLERENES</topic><topic>Levels</topic><topic>Low light level</topic><topic>MATERIALS</topic><topic>Maximum power tracking</topic><topic>Photovoltaic cells</topic><topic>PHOTOVOLTAIC EFFECT</topic><topic>POLYMERS</topic><topic>Power consumption</topic><topic>Solar cells</topic><topic>Wireless communications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Harrison K. H.</creatorcontrib><creatorcontrib>Li, Zhe</creatorcontrib><creatorcontrib>Durrant, James R.</creatorcontrib><creatorcontrib>Tsoi, Wing C.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Harrison K. H.</au><au>Li, Zhe</au><au>Durrant, James R.</au><au>Tsoi, Wing C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Is organic photovoltaics promising for indoor applications?</atitle><jtitle>Applied physics letters</jtitle><date>2016-06-20</date><risdate>2016</risdate><volume>108</volume><issue>25</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>This work utilizes organic photovoltaics (OPV) for indoor applications, such as powering small electronic devices or wireless connected Internet of Things. Three representative polymer-based OPV systems, namely, poly(3-hexylthiophene-2,5-diyl), poly[N-9′-heptadecanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole)], and poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl]], were selected as the donor materials in blend with fullerene derivatives for comparison under low light level condition using fluorescent lamps. PCDTBT based devices are found to be the best performing system, generating 13.9 μW/cm2 corresponding to 16.6% power conversion efficiency at 300 lx, although PTB7 based devices show the highest efficiency under one sun conditions. This high performance suggests that OPV is competitive to the other PV technologies under low light condition despite much lower performance under one sun condition. Different properties of these devices are studied to explain the competitive performance at low light level. A low energy consuming method for maximum power point tracking is introduced for the operation of the OPV devices. Finally, a 14 cm × 14 cm OPV module with 100 cm2 active area is demonstrated for real applications. These findings suggest that OPV, in particular, PCDTBT based devices, could be a promising candidate for indoor applications.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4954268</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-3836-5139</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2016-06, Vol.108 (25) |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_scitation_primary_10_1063_1_4954268 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Applied physics Carbazoles Carbonyls CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS Donor materials EFFICIENCY Electronic devices ELECTRONIC EQUIPMENT Energy conversion efficiency FLUORESCENCE FLUORESCENT LAMPS FULLERENES Levels Low light level MATERIALS Maximum power tracking Photovoltaic cells PHOTOVOLTAIC EFFECT POLYMERS Power consumption Solar cells Wireless communications |
title | Is organic photovoltaics promising for indoor applications? |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T18%3A40%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Is%20organic%20photovoltaics%20promising%20for%20indoor%20applications?&rft.jtitle=Applied%20physics%20letters&rft.au=Lee,%20Harrison%20K.%20H.&rft.date=2016-06-20&rft.volume=108&rft.issue=25&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/1.4954268&rft_dat=%3Cproquest_scita%3E2121738884%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2121738884&rft_id=info:pmid/&rfr_iscdi=true |