Is organic photovoltaics promising for indoor applications?

This work utilizes organic photovoltaics (OPV) for indoor applications, such as powering small electronic devices or wireless connected Internet of Things. Three representative polymer-based OPV systems, namely, poly(3-hexylthiophene-2,5-diyl), poly[N-9′-heptadecanyl-2,7-carbazole-alt-5,5-(4′,7′-di-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2016-06, Vol.108 (25)
Hauptverfasser: Lee, Harrison K. H., Li, Zhe, Durrant, James R., Tsoi, Wing C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 25
container_start_page
container_title Applied physics letters
container_volume 108
creator Lee, Harrison K. H.
Li, Zhe
Durrant, James R.
Tsoi, Wing C.
description This work utilizes organic photovoltaics (OPV) for indoor applications, such as powering small electronic devices or wireless connected Internet of Things. Three representative polymer-based OPV systems, namely, poly(3-hexylthiophene-2,5-diyl), poly[N-9′-heptadecanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole)], and poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl]], were selected as the donor materials in blend with fullerene derivatives for comparison under low light level condition using fluorescent lamps. PCDTBT based devices are found to be the best performing system, generating 13.9 μW/cm2 corresponding to 16.6% power conversion efficiency at 300 lx, although PTB7 based devices show the highest efficiency under one sun conditions. This high performance suggests that OPV is competitive to the other PV technologies under low light condition despite much lower performance under one sun condition. Different properties of these devices are studied to explain the competitive performance at low light level. A low energy consuming method for maximum power point tracking is introduced for the operation of the OPV devices. Finally, a 14 cm × 14 cm OPV module with 100 cm2 active area is demonstrated for real applications. These findings suggest that OPV, in particular, PCDTBT based devices, could be a promising candidate for indoor applications.
doi_str_mv 10.1063/1.4954268
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_4954268</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2121738884</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-750ed8985d09fc9ef05a3bbc16fe6b5347439c1f1408a3a65d2785cf840bde13</originalsourceid><addsrcrecordid>eNqd0MtKAzEUBuAgCtbqwjcYcKUwNSeXmQQXIsVLoeCm-5DJJG1KOxmTtODbO7UF964OBz7O5UfoFvAEcEUfYcIkZ6QSZ2gEuK5LCiDO0QhjTMtKcrhEVymth5YTSkfoaZaKEJe686boVyGHfdhk7U0q-hi2PvluWbgQC9-1YSi67zfe6OxDl56v0YXTm2RvTnWMFm-vi-lHOf98n01f5qVhvMplzbFthRS8xdIZaR3mmjaNgcrZquGU1YxKAw4YFprqirekFtw4wXDTWqBjdHccG1L2KhmfrVmZ0HXWZEUIl1gQ-aeGu792NmW1DrvYDXcpAgRqKoRgg7o_KhNDStE61Ue_1fFbAVaHABWoU4CDfTjaw8rfl_-H9yH-QdW3jv4ALJh9kQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2121738884</pqid></control><display><type>article</type><title>Is organic photovoltaics promising for indoor applications?</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Lee, Harrison K. H. ; Li, Zhe ; Durrant, James R. ; Tsoi, Wing C.</creator><creatorcontrib>Lee, Harrison K. H. ; Li, Zhe ; Durrant, James R. ; Tsoi, Wing C.</creatorcontrib><description>This work utilizes organic photovoltaics (OPV) for indoor applications, such as powering small electronic devices or wireless connected Internet of Things. Three representative polymer-based OPV systems, namely, poly(3-hexylthiophene-2,5-diyl), poly[N-9′-heptadecanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole)], and poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl]], were selected as the donor materials in blend with fullerene derivatives for comparison under low light level condition using fluorescent lamps. PCDTBT based devices are found to be the best performing system, generating 13.9 μW/cm2 corresponding to 16.6% power conversion efficiency at 300 lx, although PTB7 based devices show the highest efficiency under one sun conditions. This high performance suggests that OPV is competitive to the other PV technologies under low light condition despite much lower performance under one sun condition. Different properties of these devices are studied to explain the competitive performance at low light level. A low energy consuming method for maximum power point tracking is introduced for the operation of the OPV devices. Finally, a 14 cm × 14 cm OPV module with 100 cm2 active area is demonstrated for real applications. These findings suggest that OPV, in particular, PCDTBT based devices, could be a promising candidate for indoor applications.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.4954268</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Carbazoles ; Carbonyls ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Donor materials ; EFFICIENCY ; Electronic devices ; ELECTRONIC EQUIPMENT ; Energy conversion efficiency ; FLUORESCENCE ; FLUORESCENT LAMPS ; FULLERENES ; Levels ; Low light level ; MATERIALS ; Maximum power tracking ; Photovoltaic cells ; PHOTOVOLTAIC EFFECT ; POLYMERS ; Power consumption ; Solar cells ; Wireless communications</subject><ispartof>Applied physics letters, 2016-06, Vol.108 (25)</ispartof><rights>Author(s)</rights><rights>2016 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-750ed8985d09fc9ef05a3bbc16fe6b5347439c1f1408a3a65d2785cf840bde13</citedby><cites>FETCH-LOGICAL-c456t-750ed8985d09fc9ef05a3bbc16fe6b5347439c1f1408a3a65d2785cf840bde13</cites><orcidid>0000-0003-3836-5139</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/1.4954268$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,777,781,791,882,4498,27905,27906,76133</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22590829$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Harrison K. H.</creatorcontrib><creatorcontrib>Li, Zhe</creatorcontrib><creatorcontrib>Durrant, James R.</creatorcontrib><creatorcontrib>Tsoi, Wing C.</creatorcontrib><title>Is organic photovoltaics promising for indoor applications?</title><title>Applied physics letters</title><description>This work utilizes organic photovoltaics (OPV) for indoor applications, such as powering small electronic devices or wireless connected Internet of Things. Three representative polymer-based OPV systems, namely, poly(3-hexylthiophene-2,5-diyl), poly[N-9′-heptadecanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole)], and poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl]], were selected as the donor materials in blend with fullerene derivatives for comparison under low light level condition using fluorescent lamps. PCDTBT based devices are found to be the best performing system, generating 13.9 μW/cm2 corresponding to 16.6% power conversion efficiency at 300 lx, although PTB7 based devices show the highest efficiency under one sun conditions. This high performance suggests that OPV is competitive to the other PV technologies under low light condition despite much lower performance under one sun condition. Different properties of these devices are studied to explain the competitive performance at low light level. A low energy consuming method for maximum power point tracking is introduced for the operation of the OPV devices. Finally, a 14 cm × 14 cm OPV module with 100 cm2 active area is demonstrated for real applications. These findings suggest that OPV, in particular, PCDTBT based devices, could be a promising candidate for indoor applications.</description><subject>Applied physics</subject><subject>Carbazoles</subject><subject>Carbonyls</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Donor materials</subject><subject>EFFICIENCY</subject><subject>Electronic devices</subject><subject>ELECTRONIC EQUIPMENT</subject><subject>Energy conversion efficiency</subject><subject>FLUORESCENCE</subject><subject>FLUORESCENT LAMPS</subject><subject>FULLERENES</subject><subject>Levels</subject><subject>Low light level</subject><subject>MATERIALS</subject><subject>Maximum power tracking</subject><subject>Photovoltaic cells</subject><subject>PHOTOVOLTAIC EFFECT</subject><subject>POLYMERS</subject><subject>Power consumption</subject><subject>Solar cells</subject><subject>Wireless communications</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqd0MtKAzEUBuAgCtbqwjcYcKUwNSeXmQQXIsVLoeCm-5DJJG1KOxmTtODbO7UF964OBz7O5UfoFvAEcEUfYcIkZ6QSZ2gEuK5LCiDO0QhjTMtKcrhEVymth5YTSkfoaZaKEJe686boVyGHfdhk7U0q-hi2PvluWbgQC9-1YSi67zfe6OxDl56v0YXTm2RvTnWMFm-vi-lHOf98n01f5qVhvMplzbFthRS8xdIZaR3mmjaNgcrZquGU1YxKAw4YFprqirekFtw4wXDTWqBjdHccG1L2KhmfrVmZ0HXWZEUIl1gQ-aeGu792NmW1DrvYDXcpAgRqKoRgg7o_KhNDStE61Ue_1fFbAVaHABWoU4CDfTjaw8rfl_-H9yH-QdW3jv4ALJh9kQ</recordid><startdate>20160620</startdate><enddate>20160620</enddate><creator>Lee, Harrison K. H.</creator><creator>Li, Zhe</creator><creator>Durrant, James R.</creator><creator>Tsoi, Wing C.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-3836-5139</orcidid></search><sort><creationdate>20160620</creationdate><title>Is organic photovoltaics promising for indoor applications?</title><author>Lee, Harrison K. H. ; Li, Zhe ; Durrant, James R. ; Tsoi, Wing C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-750ed8985d09fc9ef05a3bbc16fe6b5347439c1f1408a3a65d2785cf840bde13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Applied physics</topic><topic>Carbazoles</topic><topic>Carbonyls</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Donor materials</topic><topic>EFFICIENCY</topic><topic>Electronic devices</topic><topic>ELECTRONIC EQUIPMENT</topic><topic>Energy conversion efficiency</topic><topic>FLUORESCENCE</topic><topic>FLUORESCENT LAMPS</topic><topic>FULLERENES</topic><topic>Levels</topic><topic>Low light level</topic><topic>MATERIALS</topic><topic>Maximum power tracking</topic><topic>Photovoltaic cells</topic><topic>PHOTOVOLTAIC EFFECT</topic><topic>POLYMERS</topic><topic>Power consumption</topic><topic>Solar cells</topic><topic>Wireless communications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Harrison K. H.</creatorcontrib><creatorcontrib>Li, Zhe</creatorcontrib><creatorcontrib>Durrant, James R.</creatorcontrib><creatorcontrib>Tsoi, Wing C.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Harrison K. H.</au><au>Li, Zhe</au><au>Durrant, James R.</au><au>Tsoi, Wing C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Is organic photovoltaics promising for indoor applications?</atitle><jtitle>Applied physics letters</jtitle><date>2016-06-20</date><risdate>2016</risdate><volume>108</volume><issue>25</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>This work utilizes organic photovoltaics (OPV) for indoor applications, such as powering small electronic devices or wireless connected Internet of Things. Three representative polymer-based OPV systems, namely, poly(3-hexylthiophene-2,5-diyl), poly[N-9′-heptadecanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole)], and poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl]], were selected as the donor materials in blend with fullerene derivatives for comparison under low light level condition using fluorescent lamps. PCDTBT based devices are found to be the best performing system, generating 13.9 μW/cm2 corresponding to 16.6% power conversion efficiency at 300 lx, although PTB7 based devices show the highest efficiency under one sun conditions. This high performance suggests that OPV is competitive to the other PV technologies under low light condition despite much lower performance under one sun condition. Different properties of these devices are studied to explain the competitive performance at low light level. A low energy consuming method for maximum power point tracking is introduced for the operation of the OPV devices. Finally, a 14 cm × 14 cm OPV module with 100 cm2 active area is demonstrated for real applications. These findings suggest that OPV, in particular, PCDTBT based devices, could be a promising candidate for indoor applications.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4954268</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-3836-5139</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2016-06, Vol.108 (25)
issn 0003-6951
1077-3118
language eng
recordid cdi_scitation_primary_10_1063_1_4954268
source AIP Journals Complete; Alma/SFX Local Collection
subjects Applied physics
Carbazoles
Carbonyls
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
Donor materials
EFFICIENCY
Electronic devices
ELECTRONIC EQUIPMENT
Energy conversion efficiency
FLUORESCENCE
FLUORESCENT LAMPS
FULLERENES
Levels
Low light level
MATERIALS
Maximum power tracking
Photovoltaic cells
PHOTOVOLTAIC EFFECT
POLYMERS
Power consumption
Solar cells
Wireless communications
title Is organic photovoltaics promising for indoor applications?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T18%3A40%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Is%20organic%20photovoltaics%20promising%20for%20indoor%20applications?&rft.jtitle=Applied%20physics%20letters&rft.au=Lee,%20Harrison%20K.%20H.&rft.date=2016-06-20&rft.volume=108&rft.issue=25&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/1.4954268&rft_dat=%3Cproquest_scita%3E2121738884%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2121738884&rft_id=info:pmid/&rfr_iscdi=true