Experimental evaluation of electrical conductivity imaging of anisotropic brain tissues using a combination of diffusion tensor imaging and magnetic resonance electrical impedance tomography

Anisotropy of biological tissues is a low-frequency phenomenon that is associated with the function and structure of cell membranes. Imaging of anisotropic conductivity has potential for the analysis of interactions between electromagnetic fields and biological systems, such as the prediction of cur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIP advances 2016-06, Vol.6 (6), p.065109-065109-7
Hauptverfasser: Sajib, Saurav Z. K., Jeong, Woo Chul, Kyung, Eun Jung, Kim, Hyun Bum, Oh, Tong In, Kim, Hyung Joong, Kwon, Oh In, Woo, Eung Je
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 065109-7
container_issue 6
container_start_page 065109
container_title AIP advances
container_volume 6
creator Sajib, Saurav Z. K.
Jeong, Woo Chul
Kyung, Eun Jung
Kim, Hyun Bum
Oh, Tong In
Kim, Hyung Joong
Kwon, Oh In
Woo, Eung Je
description Anisotropy of biological tissues is a low-frequency phenomenon that is associated with the function and structure of cell membranes. Imaging of anisotropic conductivity has potential for the analysis of interactions between electromagnetic fields and biological systems, such as the prediction of current pathways in electrical stimulation therapy. To improve application to the clinical environment, precise approaches are required to understand the exact responses inside the human body subjected to the stimulated currents. In this study, we experimentally evaluate the anisotropic conductivity tensor distribution of canine brain tissues, using a recently developed diffusion tensor-magnetic resonance electrical impedance tomography method. At low frequency, electrical conductivity of the biological tissues can be expressed as a product of the mobility and concentration of ions in the extracellular space. From diffusion tensor images of the brain, we can obtain directional information on diffusive movements of water molecules, which correspond to the mobility of ions. The position dependent scale factor, which provides information on ion concentration, was successfully calculated from the magnetic flux density, to obtain the equivalent conductivity tensor. By combining the information from both techniques, we can finally reconstruct the anisotropic conductivity tensor images of brain tissues. The reconstructed conductivity images better demonstrate the enhanced signal intensity in strongly anisotropic brain regions, compared with those resulting from previous methods using a global scale factor.
doi_str_mv 10.1063/1.4953893
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_4953893</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_ba2141302adf4b3a8eb111f9296c7cea</doaj_id><sourcerecordid>2121719013</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-6d1af2430a8e05e28e96cbf2e4e24175072bdef8d4666ba508bead43afdda7973</originalsourceid><addsrcrecordid>eNqdks1uGyEQx1dVKzVKc-gbrNRTKzllgP06VlHaRorUS3JGszA4WF7YAmvVL9dnK7YjJ-dyAWZ-_OeLqvoI7BpYK77CtRwa0Q_iTXXBoelXgvP27avz--oqpQ0rSw7AenlR_b39M1N0E_mM25p2uF0wu-DrYGvaks7R6eLQwZtFZ7dzeV-7CdfOrw8IepdCjmF2uh4jOl9nl9JCqV7SAcHychqdP2saZ21xlUsmn0I8i6E3dTl6ykUqUgoevabXObhpJnM05jCFdcT5af-hemdxm-jqeb-sHr_fPtz8XN3_-nF38-1-pWXT5lVrAC2XgmFPrCHe09Dq0XKSxCV0Dev4aMj2RrZtO2LD-pHQSIHWGOyGTlxWdyddE3Cj5tIwjHsV0KmjIcS1wlgy35IakYMEwTgaK0dRIo4AYAdeQnaasGh9OmmFlJ1K2mXST6XBvlSqypAAGiFeqDmG36WhWW3CEn0pUnHg0MHA4EB9PlE6hpQi2XNuwNThTyhQz3-isF9O7CHkcSD_B-9CfAHVbKz4B3kMypg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2121719013</pqid></control><display><type>article</type><title>Experimental evaluation of electrical conductivity imaging of anisotropic brain tissues using a combination of diffusion tensor imaging and magnetic resonance electrical impedance tomography</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Sajib, Saurav Z. K. ; Jeong, Woo Chul ; Kyung, Eun Jung ; Kim, Hyun Bum ; Oh, Tong In ; Kim, Hyung Joong ; Kwon, Oh In ; Woo, Eung Je</creator><creatorcontrib>Sajib, Saurav Z. K. ; Jeong, Woo Chul ; Kyung, Eun Jung ; Kim, Hyun Bum ; Oh, Tong In ; Kim, Hyung Joong ; Kwon, Oh In ; Woo, Eung Je</creatorcontrib><description>Anisotropy of biological tissues is a low-frequency phenomenon that is associated with the function and structure of cell membranes. Imaging of anisotropic conductivity has potential for the analysis of interactions between electromagnetic fields and biological systems, such as the prediction of current pathways in electrical stimulation therapy. To improve application to the clinical environment, precise approaches are required to understand the exact responses inside the human body subjected to the stimulated currents. In this study, we experimentally evaluate the anisotropic conductivity tensor distribution of canine brain tissues, using a recently developed diffusion tensor-magnetic resonance electrical impedance tomography method. At low frequency, electrical conductivity of the biological tissues can be expressed as a product of the mobility and concentration of ions in the extracellular space. From diffusion tensor images of the brain, we can obtain directional information on diffusive movements of water molecules, which correspond to the mobility of ions. The position dependent scale factor, which provides information on ion concentration, was successfully calculated from the magnetic flux density, to obtain the equivalent conductivity tensor. By combining the information from both techniques, we can finally reconstruct the anisotropic conductivity tensor images of brain tissues. The reconstructed conductivity images better demonstrate the enhanced signal intensity in strongly anisotropic brain regions, compared with those resulting from previous methods using a global scale factor.</description><identifier>ISSN: 2158-3226</identifier><identifier>EISSN: 2158-3226</identifier><identifier>DOI: 10.1063/1.4953893</identifier><identifier>CODEN: AAIDBI</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>ANIMAL TISSUES ; ANISOTROPY ; BIOMEDICAL RADIOGRAPHY ; BRAIN ; Cell membranes ; CURRENTS ; DIFFUSION ; DISTRIBUTION ; ELECTRIC CONDUCTIVITY ; Electrical impedance ; Electrical resistivity ; ELECTROMAGNETIC FIELDS ; EXTRACELLULAR SPACE ; FLUX DENSITY ; Human behavior ; Image enhancement ; Image reconstruction ; INTERACTIONS ; Ion concentration ; MAGNETIC FLUX ; MAGNETIC RESONANCE ; Medical imaging ; MOBILITY ; MOLECULES ; RADIOLOGY AND NUCLEAR MEDICINE ; STIMULATION ; THERAPY ; Tissues ; TOMOGRAPHY ; WATER ; Water chemistry</subject><ispartof>AIP advances, 2016-06, Vol.6 (6), p.065109-065109-7</ispartof><rights>Author(s)</rights><rights>2016 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-6d1af2430a8e05e28e96cbf2e4e24175072bdef8d4666ba508bead43afdda7973</citedby><cites>FETCH-LOGICAL-c456t-6d1af2430a8e05e28e96cbf2e4e24175072bdef8d4666ba508bead43afdda7973</cites><orcidid>0000-0003-0110-9027 ; 0000-0002-1778-9007</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,860,881,2096,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22611533$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Sajib, Saurav Z. K.</creatorcontrib><creatorcontrib>Jeong, Woo Chul</creatorcontrib><creatorcontrib>Kyung, Eun Jung</creatorcontrib><creatorcontrib>Kim, Hyun Bum</creatorcontrib><creatorcontrib>Oh, Tong In</creatorcontrib><creatorcontrib>Kim, Hyung Joong</creatorcontrib><creatorcontrib>Kwon, Oh In</creatorcontrib><creatorcontrib>Woo, Eung Je</creatorcontrib><title>Experimental evaluation of electrical conductivity imaging of anisotropic brain tissues using a combination of diffusion tensor imaging and magnetic resonance electrical impedance tomography</title><title>AIP advances</title><description>Anisotropy of biological tissues is a low-frequency phenomenon that is associated with the function and structure of cell membranes. Imaging of anisotropic conductivity has potential for the analysis of interactions between electromagnetic fields and biological systems, such as the prediction of current pathways in electrical stimulation therapy. To improve application to the clinical environment, precise approaches are required to understand the exact responses inside the human body subjected to the stimulated currents. In this study, we experimentally evaluate the anisotropic conductivity tensor distribution of canine brain tissues, using a recently developed diffusion tensor-magnetic resonance electrical impedance tomography method. At low frequency, electrical conductivity of the biological tissues can be expressed as a product of the mobility and concentration of ions in the extracellular space. From diffusion tensor images of the brain, we can obtain directional information on diffusive movements of water molecules, which correspond to the mobility of ions. The position dependent scale factor, which provides information on ion concentration, was successfully calculated from the magnetic flux density, to obtain the equivalent conductivity tensor. By combining the information from both techniques, we can finally reconstruct the anisotropic conductivity tensor images of brain tissues. The reconstructed conductivity images better demonstrate the enhanced signal intensity in strongly anisotropic brain regions, compared with those resulting from previous methods using a global scale factor.</description><subject>ANIMAL TISSUES</subject><subject>ANISOTROPY</subject><subject>BIOMEDICAL RADIOGRAPHY</subject><subject>BRAIN</subject><subject>Cell membranes</subject><subject>CURRENTS</subject><subject>DIFFUSION</subject><subject>DISTRIBUTION</subject><subject>ELECTRIC CONDUCTIVITY</subject><subject>Electrical impedance</subject><subject>Electrical resistivity</subject><subject>ELECTROMAGNETIC FIELDS</subject><subject>EXTRACELLULAR SPACE</subject><subject>FLUX DENSITY</subject><subject>Human behavior</subject><subject>Image enhancement</subject><subject>Image reconstruction</subject><subject>INTERACTIONS</subject><subject>Ion concentration</subject><subject>MAGNETIC FLUX</subject><subject>MAGNETIC RESONANCE</subject><subject>Medical imaging</subject><subject>MOBILITY</subject><subject>MOLECULES</subject><subject>RADIOLOGY AND NUCLEAR MEDICINE</subject><subject>STIMULATION</subject><subject>THERAPY</subject><subject>Tissues</subject><subject>TOMOGRAPHY</subject><subject>WATER</subject><subject>Water chemistry</subject><issn>2158-3226</issn><issn>2158-3226</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqdks1uGyEQx1dVKzVKc-gbrNRTKzllgP06VlHaRorUS3JGszA4WF7YAmvVL9dnK7YjJ-dyAWZ-_OeLqvoI7BpYK77CtRwa0Q_iTXXBoelXgvP27avz--oqpQ0rSw7AenlR_b39M1N0E_mM25p2uF0wu-DrYGvaks7R6eLQwZtFZ7dzeV-7CdfOrw8IepdCjmF2uh4jOl9nl9JCqV7SAcHychqdP2saZ21xlUsmn0I8i6E3dTl6ykUqUgoevabXObhpJnM05jCFdcT5af-hemdxm-jqeb-sHr_fPtz8XN3_-nF38-1-pWXT5lVrAC2XgmFPrCHe09Dq0XKSxCV0Dev4aMj2RrZtO2LD-pHQSIHWGOyGTlxWdyddE3Cj5tIwjHsV0KmjIcS1wlgy35IakYMEwTgaK0dRIo4AYAdeQnaasGh9OmmFlJ1K2mXST6XBvlSqypAAGiFeqDmG36WhWW3CEn0pUnHg0MHA4EB9PlE6hpQi2XNuwNThTyhQz3-isF9O7CHkcSD_B-9CfAHVbKz4B3kMypg</recordid><startdate>20160601</startdate><enddate>20160601</enddate><creator>Sajib, Saurav Z. K.</creator><creator>Jeong, Woo Chul</creator><creator>Kyung, Eun Jung</creator><creator>Kim, Hyun Bum</creator><creator>Oh, Tong In</creator><creator>Kim, Hyung Joong</creator><creator>Kwon, Oh In</creator><creator>Woo, Eung Je</creator><general>American Institute of Physics</general><general>AIP Publishing LLC</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0110-9027</orcidid><orcidid>https://orcid.org/0000-0002-1778-9007</orcidid></search><sort><creationdate>20160601</creationdate><title>Experimental evaluation of electrical conductivity imaging of anisotropic brain tissues using a combination of diffusion tensor imaging and magnetic resonance electrical impedance tomography</title><author>Sajib, Saurav Z. K. ; Jeong, Woo Chul ; Kyung, Eun Jung ; Kim, Hyun Bum ; Oh, Tong In ; Kim, Hyung Joong ; Kwon, Oh In ; Woo, Eung Je</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-6d1af2430a8e05e28e96cbf2e4e24175072bdef8d4666ba508bead43afdda7973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>ANIMAL TISSUES</topic><topic>ANISOTROPY</topic><topic>BIOMEDICAL RADIOGRAPHY</topic><topic>BRAIN</topic><topic>Cell membranes</topic><topic>CURRENTS</topic><topic>DIFFUSION</topic><topic>DISTRIBUTION</topic><topic>ELECTRIC CONDUCTIVITY</topic><topic>Electrical impedance</topic><topic>Electrical resistivity</topic><topic>ELECTROMAGNETIC FIELDS</topic><topic>EXTRACELLULAR SPACE</topic><topic>FLUX DENSITY</topic><topic>Human behavior</topic><topic>Image enhancement</topic><topic>Image reconstruction</topic><topic>INTERACTIONS</topic><topic>Ion concentration</topic><topic>MAGNETIC FLUX</topic><topic>MAGNETIC RESONANCE</topic><topic>Medical imaging</topic><topic>MOBILITY</topic><topic>MOLECULES</topic><topic>RADIOLOGY AND NUCLEAR MEDICINE</topic><topic>STIMULATION</topic><topic>THERAPY</topic><topic>Tissues</topic><topic>TOMOGRAPHY</topic><topic>WATER</topic><topic>Water chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sajib, Saurav Z. K.</creatorcontrib><creatorcontrib>Jeong, Woo Chul</creatorcontrib><creatorcontrib>Kyung, Eun Jung</creatorcontrib><creatorcontrib>Kim, Hyun Bum</creatorcontrib><creatorcontrib>Oh, Tong In</creatorcontrib><creatorcontrib>Kim, Hyung Joong</creatorcontrib><creatorcontrib>Kwon, Oh In</creatorcontrib><creatorcontrib>Woo, Eung Je</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>AIP advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sajib, Saurav Z. K.</au><au>Jeong, Woo Chul</au><au>Kyung, Eun Jung</au><au>Kim, Hyun Bum</au><au>Oh, Tong In</au><au>Kim, Hyung Joong</au><au>Kwon, Oh In</au><au>Woo, Eung Je</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental evaluation of electrical conductivity imaging of anisotropic brain tissues using a combination of diffusion tensor imaging and magnetic resonance electrical impedance tomography</atitle><jtitle>AIP advances</jtitle><date>2016-06-01</date><risdate>2016</risdate><volume>6</volume><issue>6</issue><spage>065109</spage><epage>065109-7</epage><pages>065109-065109-7</pages><issn>2158-3226</issn><eissn>2158-3226</eissn><coden>AAIDBI</coden><abstract>Anisotropy of biological tissues is a low-frequency phenomenon that is associated with the function and structure of cell membranes. Imaging of anisotropic conductivity has potential for the analysis of interactions between electromagnetic fields and biological systems, such as the prediction of current pathways in electrical stimulation therapy. To improve application to the clinical environment, precise approaches are required to understand the exact responses inside the human body subjected to the stimulated currents. In this study, we experimentally evaluate the anisotropic conductivity tensor distribution of canine brain tissues, using a recently developed diffusion tensor-magnetic resonance electrical impedance tomography method. At low frequency, electrical conductivity of the biological tissues can be expressed as a product of the mobility and concentration of ions in the extracellular space. From diffusion tensor images of the brain, we can obtain directional information on diffusive movements of water molecules, which correspond to the mobility of ions. The position dependent scale factor, which provides information on ion concentration, was successfully calculated from the magnetic flux density, to obtain the equivalent conductivity tensor. By combining the information from both techniques, we can finally reconstruct the anisotropic conductivity tensor images of brain tissues. The reconstructed conductivity images better demonstrate the enhanced signal intensity in strongly anisotropic brain regions, compared with those resulting from previous methods using a global scale factor.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4953893</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-0110-9027</orcidid><orcidid>https://orcid.org/0000-0002-1778-9007</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2158-3226
ispartof AIP advances, 2016-06, Vol.6 (6), p.065109-065109-7
issn 2158-3226
2158-3226
language eng
recordid cdi_scitation_primary_10_1063_1_4953893
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects ANIMAL TISSUES
ANISOTROPY
BIOMEDICAL RADIOGRAPHY
BRAIN
Cell membranes
CURRENTS
DIFFUSION
DISTRIBUTION
ELECTRIC CONDUCTIVITY
Electrical impedance
Electrical resistivity
ELECTROMAGNETIC FIELDS
EXTRACELLULAR SPACE
FLUX DENSITY
Human behavior
Image enhancement
Image reconstruction
INTERACTIONS
Ion concentration
MAGNETIC FLUX
MAGNETIC RESONANCE
Medical imaging
MOBILITY
MOLECULES
RADIOLOGY AND NUCLEAR MEDICINE
STIMULATION
THERAPY
Tissues
TOMOGRAPHY
WATER
Water chemistry
title Experimental evaluation of electrical conductivity imaging of anisotropic brain tissues using a combination of diffusion tensor imaging and magnetic resonance electrical impedance tomography
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T16%3A25%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20evaluation%20of%20electrical%20conductivity%20imaging%20of%20anisotropic%20brain%20tissues%20using%20a%20combination%20of%20diffusion%20tensor%20imaging%20and%20magnetic%20resonance%20electrical%20impedance%20tomography&rft.jtitle=AIP%20advances&rft.au=Sajib,%20Saurav%20Z.%20K.&rft.date=2016-06-01&rft.volume=6&rft.issue=6&rft.spage=065109&rft.epage=065109-7&rft.pages=065109-065109-7&rft.issn=2158-3226&rft.eissn=2158-3226&rft.coden=AAIDBI&rft_id=info:doi/10.1063/1.4953893&rft_dat=%3Cproquest_scita%3E2121719013%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2121719013&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_ba2141302adf4b3a8eb111f9296c7cea&rfr_iscdi=true