Experimental evaluation of electrical conductivity imaging of anisotropic brain tissues using a combination of diffusion tensor imaging and magnetic resonance electrical impedance tomography
Anisotropy of biological tissues is a low-frequency phenomenon that is associated with the function and structure of cell membranes. Imaging of anisotropic conductivity has potential for the analysis of interactions between electromagnetic fields and biological systems, such as the prediction of cur...
Gespeichert in:
Veröffentlicht in: | AIP advances 2016-06, Vol.6 (6), p.065109-065109-7 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 065109-7 |
---|---|
container_issue | 6 |
container_start_page | 065109 |
container_title | AIP advances |
container_volume | 6 |
creator | Sajib, Saurav Z. K. Jeong, Woo Chul Kyung, Eun Jung Kim, Hyun Bum Oh, Tong In Kim, Hyung Joong Kwon, Oh In Woo, Eung Je |
description | Anisotropy of biological tissues is a low-frequency phenomenon that is associated with the function and structure of cell membranes. Imaging of anisotropic conductivity has potential for the analysis of interactions between electromagnetic fields and biological systems, such as the prediction of current pathways in electrical stimulation therapy. To improve application to the clinical environment, precise approaches are required to understand the exact responses inside the human body subjected to the stimulated currents. In this study, we experimentally evaluate the anisotropic conductivity tensor distribution of canine brain tissues, using a recently developed diffusion tensor-magnetic resonance electrical impedance tomography method. At low frequency, electrical conductivity of the biological tissues can be expressed as a product of the mobility and concentration of ions in the extracellular space. From diffusion tensor images of the brain, we can obtain directional information on diffusive movements of water molecules, which correspond to the mobility of ions. The position dependent scale factor, which provides information on ion concentration, was successfully calculated from the magnetic flux density, to obtain the equivalent conductivity tensor. By combining the information from both techniques, we can finally reconstruct the anisotropic conductivity tensor images of brain tissues. The reconstructed conductivity images better demonstrate the enhanced signal intensity in strongly anisotropic brain regions, compared with those resulting from previous methods using a global scale factor. |
doi_str_mv | 10.1063/1.4953893 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_4953893</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_ba2141302adf4b3a8eb111f9296c7cea</doaj_id><sourcerecordid>2121719013</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-6d1af2430a8e05e28e96cbf2e4e24175072bdef8d4666ba508bead43afdda7973</originalsourceid><addsrcrecordid>eNqdks1uGyEQx1dVKzVKc-gbrNRTKzllgP06VlHaRorUS3JGszA4WF7YAmvVL9dnK7YjJ-dyAWZ-_OeLqvoI7BpYK77CtRwa0Q_iTXXBoelXgvP27avz--oqpQ0rSw7AenlR_b39M1N0E_mM25p2uF0wu-DrYGvaks7R6eLQwZtFZ7dzeV-7CdfOrw8IepdCjmF2uh4jOl9nl9JCqV7SAcHychqdP2saZ21xlUsmn0I8i6E3dTl6ykUqUgoevabXObhpJnM05jCFdcT5af-hemdxm-jqeb-sHr_fPtz8XN3_-nF38-1-pWXT5lVrAC2XgmFPrCHe09Dq0XKSxCV0Dev4aMj2RrZtO2LD-pHQSIHWGOyGTlxWdyddE3Cj5tIwjHsV0KmjIcS1wlgy35IakYMEwTgaK0dRIo4AYAdeQnaasGh9OmmFlJ1K2mXST6XBvlSqypAAGiFeqDmG36WhWW3CEn0pUnHg0MHA4EB9PlE6hpQi2XNuwNThTyhQz3-isF9O7CHkcSD_B-9CfAHVbKz4B3kMypg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2121719013</pqid></control><display><type>article</type><title>Experimental evaluation of electrical conductivity imaging of anisotropic brain tissues using a combination of diffusion tensor imaging and magnetic resonance electrical impedance tomography</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Sajib, Saurav Z. K. ; Jeong, Woo Chul ; Kyung, Eun Jung ; Kim, Hyun Bum ; Oh, Tong In ; Kim, Hyung Joong ; Kwon, Oh In ; Woo, Eung Je</creator><creatorcontrib>Sajib, Saurav Z. K. ; Jeong, Woo Chul ; Kyung, Eun Jung ; Kim, Hyun Bum ; Oh, Tong In ; Kim, Hyung Joong ; Kwon, Oh In ; Woo, Eung Je</creatorcontrib><description>Anisotropy of biological tissues is a low-frequency phenomenon that is associated with the function and structure of cell membranes. Imaging of anisotropic conductivity has potential for the analysis of interactions between electromagnetic fields and biological systems, such as the prediction of current pathways in electrical stimulation therapy. To improve application to the clinical environment, precise approaches are required to understand the exact responses inside the human body subjected to the stimulated currents. In this study, we experimentally evaluate the anisotropic conductivity tensor distribution of canine brain tissues, using a recently developed diffusion tensor-magnetic resonance electrical impedance tomography method. At low frequency, electrical conductivity of the biological tissues can be expressed as a product of the mobility and concentration of ions in the extracellular space. From diffusion tensor images of the brain, we can obtain directional information on diffusive movements of water molecules, which correspond to the mobility of ions. The position dependent scale factor, which provides information on ion concentration, was successfully calculated from the magnetic flux density, to obtain the equivalent conductivity tensor. By combining the information from both techniques, we can finally reconstruct the anisotropic conductivity tensor images of brain tissues. The reconstructed conductivity images better demonstrate the enhanced signal intensity in strongly anisotropic brain regions, compared with those resulting from previous methods using a global scale factor.</description><identifier>ISSN: 2158-3226</identifier><identifier>EISSN: 2158-3226</identifier><identifier>DOI: 10.1063/1.4953893</identifier><identifier>CODEN: AAIDBI</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>ANIMAL TISSUES ; ANISOTROPY ; BIOMEDICAL RADIOGRAPHY ; BRAIN ; Cell membranes ; CURRENTS ; DIFFUSION ; DISTRIBUTION ; ELECTRIC CONDUCTIVITY ; Electrical impedance ; Electrical resistivity ; ELECTROMAGNETIC FIELDS ; EXTRACELLULAR SPACE ; FLUX DENSITY ; Human behavior ; Image enhancement ; Image reconstruction ; INTERACTIONS ; Ion concentration ; MAGNETIC FLUX ; MAGNETIC RESONANCE ; Medical imaging ; MOBILITY ; MOLECULES ; RADIOLOGY AND NUCLEAR MEDICINE ; STIMULATION ; THERAPY ; Tissues ; TOMOGRAPHY ; WATER ; Water chemistry</subject><ispartof>AIP advances, 2016-06, Vol.6 (6), p.065109-065109-7</ispartof><rights>Author(s)</rights><rights>2016 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-6d1af2430a8e05e28e96cbf2e4e24175072bdef8d4666ba508bead43afdda7973</citedby><cites>FETCH-LOGICAL-c456t-6d1af2430a8e05e28e96cbf2e4e24175072bdef8d4666ba508bead43afdda7973</cites><orcidid>0000-0003-0110-9027 ; 0000-0002-1778-9007</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,860,881,2096,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22611533$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Sajib, Saurav Z. K.</creatorcontrib><creatorcontrib>Jeong, Woo Chul</creatorcontrib><creatorcontrib>Kyung, Eun Jung</creatorcontrib><creatorcontrib>Kim, Hyun Bum</creatorcontrib><creatorcontrib>Oh, Tong In</creatorcontrib><creatorcontrib>Kim, Hyung Joong</creatorcontrib><creatorcontrib>Kwon, Oh In</creatorcontrib><creatorcontrib>Woo, Eung Je</creatorcontrib><title>Experimental evaluation of electrical conductivity imaging of anisotropic brain tissues using a combination of diffusion tensor imaging and magnetic resonance electrical impedance tomography</title><title>AIP advances</title><description>Anisotropy of biological tissues is a low-frequency phenomenon that is associated with the function and structure of cell membranes. Imaging of anisotropic conductivity has potential for the analysis of interactions between electromagnetic fields and biological systems, such as the prediction of current pathways in electrical stimulation therapy. To improve application to the clinical environment, precise approaches are required to understand the exact responses inside the human body subjected to the stimulated currents. In this study, we experimentally evaluate the anisotropic conductivity tensor distribution of canine brain tissues, using a recently developed diffusion tensor-magnetic resonance electrical impedance tomography method. At low frequency, electrical conductivity of the biological tissues can be expressed as a product of the mobility and concentration of ions in the extracellular space. From diffusion tensor images of the brain, we can obtain directional information on diffusive movements of water molecules, which correspond to the mobility of ions. The position dependent scale factor, which provides information on ion concentration, was successfully calculated from the magnetic flux density, to obtain the equivalent conductivity tensor. By combining the information from both techniques, we can finally reconstruct the anisotropic conductivity tensor images of brain tissues. The reconstructed conductivity images better demonstrate the enhanced signal intensity in strongly anisotropic brain regions, compared with those resulting from previous methods using a global scale factor.</description><subject>ANIMAL TISSUES</subject><subject>ANISOTROPY</subject><subject>BIOMEDICAL RADIOGRAPHY</subject><subject>BRAIN</subject><subject>Cell membranes</subject><subject>CURRENTS</subject><subject>DIFFUSION</subject><subject>DISTRIBUTION</subject><subject>ELECTRIC CONDUCTIVITY</subject><subject>Electrical impedance</subject><subject>Electrical resistivity</subject><subject>ELECTROMAGNETIC FIELDS</subject><subject>EXTRACELLULAR SPACE</subject><subject>FLUX DENSITY</subject><subject>Human behavior</subject><subject>Image enhancement</subject><subject>Image reconstruction</subject><subject>INTERACTIONS</subject><subject>Ion concentration</subject><subject>MAGNETIC FLUX</subject><subject>MAGNETIC RESONANCE</subject><subject>Medical imaging</subject><subject>MOBILITY</subject><subject>MOLECULES</subject><subject>RADIOLOGY AND NUCLEAR MEDICINE</subject><subject>STIMULATION</subject><subject>THERAPY</subject><subject>Tissues</subject><subject>TOMOGRAPHY</subject><subject>WATER</subject><subject>Water chemistry</subject><issn>2158-3226</issn><issn>2158-3226</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqdks1uGyEQx1dVKzVKc-gbrNRTKzllgP06VlHaRorUS3JGszA4WF7YAmvVL9dnK7YjJ-dyAWZ-_OeLqvoI7BpYK77CtRwa0Q_iTXXBoelXgvP27avz--oqpQ0rSw7AenlR_b39M1N0E_mM25p2uF0wu-DrYGvaks7R6eLQwZtFZ7dzeV-7CdfOrw8IepdCjmF2uh4jOl9nl9JCqV7SAcHychqdP2saZ21xlUsmn0I8i6E3dTl6ykUqUgoevabXObhpJnM05jCFdcT5af-hemdxm-jqeb-sHr_fPtz8XN3_-nF38-1-pWXT5lVrAC2XgmFPrCHe09Dq0XKSxCV0Dev4aMj2RrZtO2LD-pHQSIHWGOyGTlxWdyddE3Cj5tIwjHsV0KmjIcS1wlgy35IakYMEwTgaK0dRIo4AYAdeQnaasGh9OmmFlJ1K2mXST6XBvlSqypAAGiFeqDmG36WhWW3CEn0pUnHg0MHA4EB9PlE6hpQi2XNuwNThTyhQz3-isF9O7CHkcSD_B-9CfAHVbKz4B3kMypg</recordid><startdate>20160601</startdate><enddate>20160601</enddate><creator>Sajib, Saurav Z. K.</creator><creator>Jeong, Woo Chul</creator><creator>Kyung, Eun Jung</creator><creator>Kim, Hyun Bum</creator><creator>Oh, Tong In</creator><creator>Kim, Hyung Joong</creator><creator>Kwon, Oh In</creator><creator>Woo, Eung Je</creator><general>American Institute of Physics</general><general>AIP Publishing LLC</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0110-9027</orcidid><orcidid>https://orcid.org/0000-0002-1778-9007</orcidid></search><sort><creationdate>20160601</creationdate><title>Experimental evaluation of electrical conductivity imaging of anisotropic brain tissues using a combination of diffusion tensor imaging and magnetic resonance electrical impedance tomography</title><author>Sajib, Saurav Z. K. ; Jeong, Woo Chul ; Kyung, Eun Jung ; Kim, Hyun Bum ; Oh, Tong In ; Kim, Hyung Joong ; Kwon, Oh In ; Woo, Eung Je</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-6d1af2430a8e05e28e96cbf2e4e24175072bdef8d4666ba508bead43afdda7973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>ANIMAL TISSUES</topic><topic>ANISOTROPY</topic><topic>BIOMEDICAL RADIOGRAPHY</topic><topic>BRAIN</topic><topic>Cell membranes</topic><topic>CURRENTS</topic><topic>DIFFUSION</topic><topic>DISTRIBUTION</topic><topic>ELECTRIC CONDUCTIVITY</topic><topic>Electrical impedance</topic><topic>Electrical resistivity</topic><topic>ELECTROMAGNETIC FIELDS</topic><topic>EXTRACELLULAR SPACE</topic><topic>FLUX DENSITY</topic><topic>Human behavior</topic><topic>Image enhancement</topic><topic>Image reconstruction</topic><topic>INTERACTIONS</topic><topic>Ion concentration</topic><topic>MAGNETIC FLUX</topic><topic>MAGNETIC RESONANCE</topic><topic>Medical imaging</topic><topic>MOBILITY</topic><topic>MOLECULES</topic><topic>RADIOLOGY AND NUCLEAR MEDICINE</topic><topic>STIMULATION</topic><topic>THERAPY</topic><topic>Tissues</topic><topic>TOMOGRAPHY</topic><topic>WATER</topic><topic>Water chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sajib, Saurav Z. K.</creatorcontrib><creatorcontrib>Jeong, Woo Chul</creatorcontrib><creatorcontrib>Kyung, Eun Jung</creatorcontrib><creatorcontrib>Kim, Hyun Bum</creatorcontrib><creatorcontrib>Oh, Tong In</creatorcontrib><creatorcontrib>Kim, Hyung Joong</creatorcontrib><creatorcontrib>Kwon, Oh In</creatorcontrib><creatorcontrib>Woo, Eung Je</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>AIP advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sajib, Saurav Z. K.</au><au>Jeong, Woo Chul</au><au>Kyung, Eun Jung</au><au>Kim, Hyun Bum</au><au>Oh, Tong In</au><au>Kim, Hyung Joong</au><au>Kwon, Oh In</au><au>Woo, Eung Je</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental evaluation of electrical conductivity imaging of anisotropic brain tissues using a combination of diffusion tensor imaging and magnetic resonance electrical impedance tomography</atitle><jtitle>AIP advances</jtitle><date>2016-06-01</date><risdate>2016</risdate><volume>6</volume><issue>6</issue><spage>065109</spage><epage>065109-7</epage><pages>065109-065109-7</pages><issn>2158-3226</issn><eissn>2158-3226</eissn><coden>AAIDBI</coden><abstract>Anisotropy of biological tissues is a low-frequency phenomenon that is associated with the function and structure of cell membranes. Imaging of anisotropic conductivity has potential for the analysis of interactions between electromagnetic fields and biological systems, such as the prediction of current pathways in electrical stimulation therapy. To improve application to the clinical environment, precise approaches are required to understand the exact responses inside the human body subjected to the stimulated currents. In this study, we experimentally evaluate the anisotropic conductivity tensor distribution of canine brain tissues, using a recently developed diffusion tensor-magnetic resonance electrical impedance tomography method. At low frequency, electrical conductivity of the biological tissues can be expressed as a product of the mobility and concentration of ions in the extracellular space. From diffusion tensor images of the brain, we can obtain directional information on diffusive movements of water molecules, which correspond to the mobility of ions. The position dependent scale factor, which provides information on ion concentration, was successfully calculated from the magnetic flux density, to obtain the equivalent conductivity tensor. By combining the information from both techniques, we can finally reconstruct the anisotropic conductivity tensor images of brain tissues. The reconstructed conductivity images better demonstrate the enhanced signal intensity in strongly anisotropic brain regions, compared with those resulting from previous methods using a global scale factor.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4953893</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-0110-9027</orcidid><orcidid>https://orcid.org/0000-0002-1778-9007</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2158-3226 |
ispartof | AIP advances, 2016-06, Vol.6 (6), p.065109-065109-7 |
issn | 2158-3226 2158-3226 |
language | eng |
recordid | cdi_scitation_primary_10_1063_1_4953893 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | ANIMAL TISSUES ANISOTROPY BIOMEDICAL RADIOGRAPHY BRAIN Cell membranes CURRENTS DIFFUSION DISTRIBUTION ELECTRIC CONDUCTIVITY Electrical impedance Electrical resistivity ELECTROMAGNETIC FIELDS EXTRACELLULAR SPACE FLUX DENSITY Human behavior Image enhancement Image reconstruction INTERACTIONS Ion concentration MAGNETIC FLUX MAGNETIC RESONANCE Medical imaging MOBILITY MOLECULES RADIOLOGY AND NUCLEAR MEDICINE STIMULATION THERAPY Tissues TOMOGRAPHY WATER Water chemistry |
title | Experimental evaluation of electrical conductivity imaging of anisotropic brain tissues using a combination of diffusion tensor imaging and magnetic resonance electrical impedance tomography |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T16%3A25%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20evaluation%20of%20electrical%20conductivity%20imaging%20of%20anisotropic%20brain%20tissues%20using%20a%20combination%20of%20diffusion%20tensor%20imaging%20and%20magnetic%20resonance%20electrical%20impedance%20tomography&rft.jtitle=AIP%20advances&rft.au=Sajib,%20Saurav%20Z.%20K.&rft.date=2016-06-01&rft.volume=6&rft.issue=6&rft.spage=065109&rft.epage=065109-7&rft.pages=065109-065109-7&rft.issn=2158-3226&rft.eissn=2158-3226&rft.coden=AAIDBI&rft_id=info:doi/10.1063/1.4953893&rft_dat=%3Cproquest_scita%3E2121719013%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2121719013&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_ba2141302adf4b3a8eb111f9296c7cea&rfr_iscdi=true |